Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
331 changes: 301 additions & 30 deletions bsp/qemu-virt64-riscv/README.md
Original file line number Diff line number Diff line change
@@ -1,47 +1,318 @@
# RT-Smart QEMU SYSTEM RISC-V RV64 BSP
**QEMU/RISCV64 VIRT Board Support Package User Guide**

English | [中文](./README_ch.md)
English | [中文](./README_cn.md)

## 1. Introduction
<!-- TOC -->

QEMU can emulate both 32-bit and 64-bit RISC-V CPUs. Use the qemu-system-riscv64 executable to simulate a 64-bit RISC-V machine, qemu-system-riscv32 executable to simulate a 32-bit RISC-V machine.
- [1. Introduction](#1-introduction)
- [2. Building](#2-building)
- [2.1. Installing the toolchain](#21-installing-the-toolchain)
- [2.2. Setting RT-Thread toolchain environment variables](#22-setting-rt-thread-toolchain-environment-variables)
- [2.3. Downloading the kernel](#23-downloading-the-kernel)
- [2.4. Configuring the kernel](#24-configuring-the-kernel)
- [2.5. Compiling the kernel](#25-compiling-the-kernel)
- [3. Running](#3-running)
- [3.1. Installing QEMU](#31-installing-qemu)
- [3.2. Running QEMU](#32-running-qemu)
- [4. How to use rv64ilp32 toolchain](#4-how-to-use-rv64ilp32-toolchain)
- [5. Contact information](#5-contact-information)

QEMU has generally good support for RISC-V guests. It has support for several different machines. The reason we support so many is that RISC-V hardware is much more widely varying than x86 hardware. RISC-V CPUs are generally built into “system-on-chip” (SoC) designs created by many different companies with different devices, and these SoCs are then built into machines which can vary still further even if they use the same SoC.
<!-- /TOC -->

For most boards the CPU type is fixed (matching what the hardware has), so typically you don’t need to specify the CPU type by hand, except for special cases like the virt board.
# 1. Introduction

## 2. Building
RISC-V is an open and free instruction set architecture (ISA). This project is a port on the RISCV64 VIRT version of QEMU.

It's tedious to properly build a kernel since each RISC-V toolchain is specified to one RISC-V ISA. So you have to use different toolchain for different RISC-V ISAs.
Here we focus on 2 types of ISA: `rv64imafdcv` and `rv64imac`.
This project supports the world's first rv64ilp32 product-level open source toolchain jointly launched by the Xuantie team and the Institute of Software of the Chinese Academy of Sciences.

If you are not sure what kinds of ISA you need, then `rv64imac` should satisfied your case most time. Given a riscv toolchain, you can check the ISA it supports like this:
# 2. Building

```bash
root@a9025fd90fd4:/home/rtthread-smart# riscv64-unknown-linux-musl-gcc -v
Using built-in specs.
COLLECT_GCC=riscv64-unknown-linux-musl-gcc
COLLECT_LTO_WRAPPER=/home/rtthread-smart/tools/gnu_gcc/riscv64-linux-musleabi_for_x86_64-pc-linux-gnu/bin/../libexec/gcc/riscv64-unknown-linux-musl/10.1.0/lto-wrapper
Target: riscv64-unknown-linux-musl
Configured with: /builds/alliance/risc-v-toolchain/riscv-gcc/configure --target=riscv64-unknown-linux-musl --prefix=/builds/alliance/risc-v-toolchain/install-native/ --with-sysroot=/builds/alliance/risc-v-toolchain/install-native//riscv64-unknown-linux-musl --with-system-zlib --enable-shared --enable-tls --enable-languages=c,c++ --disable-libmudflap --disable-libssp --disable-libquadmath --disable-libsanitizer --disable-nls --disable-bootstrap --src=/builds/alliance/risc-v-toolchain/riscv-gcc --disable-multilib --with-abi=lp64 --with-arch=rv64imac --with-tune=rocket 'CFLAGS_FOR_TARGET=-O2 -mcmodel=medany -march=rv64imac -mabi=lp64 -D __riscv_soft_float' 'CXXFLAGS_FOR_TARGET=-O2 -mcmodel=medany -march=rv64imac -mabi=lp64 -D __riscv_soft_float'
Thread model: posix
Supported LTO compression algorithms: zlib
gcc version 10.1.0 (GCC)
Working system: take Ubuntu 22.04 as an example:

```shell
$ lsb_release -a
No LSB modules are available.
Distributor ID: Ubuntu
Description: Ubuntu 22.04.2 LTS
Release: 22.04
Codename: jammy
```

## 2.1. Installing the toolchain

The specific toolchain used is consistent with the official RT-Thread. For the specific toolchain version, please refer to the file <https://github.com/RT-Thread/rt-thread/blob/master/.github/workflows/action_utest.yml> in the RT-Thread repository.

```yaml
- name: Install RISC-V ToolChains
if: ${{ matrix.legs.QEMU_ARCH == 'riscv64' && matrix.legs.UTEST != 'rtsmart/riscv64' && success() }}
run: |
wget -q https://github.com/RT-Thread/toolchains-ci/releases/download/v1.4/riscv64-unknown-elf-toolchain-10.2.0-2020.12.8-x86_64-linux-ubuntu14.tar.gz
sudo tar zxvf riscv64-unknown-elf-toolchain-10.2.0-2020.12.8-x86_64-linux-ubuntu14.tar.gz -C /opt
/opt/riscv64-unknown-elf-toolchain-10.2.0-2020.12.8-x86_64-linux-ubuntu14/bin/riscv64-unknown-elf-gcc --version
echo "RTT_EXEC_PATH=/opt/riscv64-unknown-elf-toolchain-10.2.0-2020.12.8-x86_64-linux-ubuntu14/bin" >> $GITHUB_ENV

- name: Install RISC-V Musl ToolChains
if: ${{ matrix.legs.QEMU_ARCH == 'riscv64' && matrix.legs.UTEST == 'rtsmart/riscv64' && success() }}
shell: bash
run: |
wget -q https://github.com/RT-Thread/toolchains-ci/releases/download/v1.7/riscv64-linux-musleabi_for_x86_64-pc-linux-gnu_latest.tar.bz2
sudo tar xjf riscv64-linux-musleabi_for_x86_64-pc-linux-gnu_latest.tar.bz2 -C /opt
/opt/riscv64-linux-musleabi_for_x86_64-pc-linux-gnu/bin/riscv64-unknown-linux-musl-gcc --version
echo "RTT_EXEC_PATH=/opt/riscv64-linux-musleabi_for_x86_64-pc-linux-gnu/bin" >> $GITHUB_ENV
echo "RTT_CC_PREFIX=riscv64-unknown-linux-musl-" >> $GITHUB_ENV
```

Among them, `riscv64-unknown-elf-gcc` is used to build the RT-Thread Standard version, and `riscv64-unknown-linux-musl-gcc` is used to build the RT-Thread Smart version. Download them to your local computer according to the links shown above and decompress them.

## 2.2. Setting RT-Thread toolchain environment variables

There are three environment variables related to the RT-Thread toolchain

- `RTT_CC` is the toolchain name, which is `"gcc"` here
- `RTT_CC_PREFIX`: is the toolchain prefix, which is `"riscv64-unknown-elf-"` for the Standard version and `"riscv64-unknown-linux-musl-"` for the Smart version.
- `RTT_EXEC_PATH`: the path where the bin folder of the toolchain is located, such as `"$HOME/tools/riscv64-unknown-elf-toolchain-10.2.0-2020.12.8-x86_64-linux-ubuntu14/bin"`. This is set according to the actual path after personal download and decompression. Note that the toolchains of the RT-Thread standard version and the Smart version are two different versions, and the path name of `RTT_EXEC_PATH` must be set to `bin`.

If you use them all the time, it is recommended to export these three environment variables in the `.bashrc` file.

## 2.3. Downloading the kernel

Assume that the working path is `$WORKSPACE`.

```shell
$ cd $WORKSPACE
$ git clone [email protected]:RT-Thread/rt-thread.git
```

**Note: This document is based on the kernel version git commit ID: ebe2926cd6.**

Enter the BSP directory where qemu-virt64-riscv is located. The following operations will not be introduced separately. By default, it is in this directory.

```shell
$ cd $WORKSPACE/rt-thread/bsp/qemu-virt64-riscv
```

## 2.4. Configuring the kernel

Refresh the configuration file before compiling for the first time.

```shell
$ scons --menuconfig
```

The default configuration is the RT-Thread standard version, so if you don't have any special requirements, don't change anything, just save and exit.

If you want to use the RT-Thread Smart version, at least turn on the `RT_USING_SMART` option after entering the configuration menu (see the figure below), and the rest depends on your needs.

```
(Top) → RT-Thread Kernel
RT-Thread Project Configuration
(24) The maximal size of kernel object name
[ ] Use the data types defined in ARCH_CPU
[*] Enable RT-Thread Smart (microkernel on kernel/userland)
[ ] Enable RT-Thread Nano
...
```

Save and exit after modification.

## 2.5. Compiling the kernel

If you have compiled before, you can clean it up:

```shell
$ scons --clean
```

Or compile directly:

```shell
$ scons -j$(nproc)
```

The `-march=***` is what you are looking for. And the `-mabi=***` is also an important message to configure compiling script.
The kernel binary file `rtthread.bin` will be generated in the `$WORKSPACE/rt-thread/bsp/qemu-virt64-riscv`.

# 3. Running

## 3.1. Installing QEMU

```shell
$ sudo apt update
$ sudo apt install qemu-system-misc
```

After the installation is complete, you can check the version.

```shell
$ qemu-system-riscv64 --version
QEMU emulator version 6.2.0 (Debian 1:6.2+dfsg-2ubuntu6.24)
Copyright (c) 2003-2021 Fabrice Bellard and the QEMU Project developers
```

## 3.2. Running QEMU

The repository has provided a ready-made execution script, which can be executed directly:

```shell
$ ./qemu-nographic.sh
```

The running results of the RT-Thread Standard version are as follows:

```shell
$ ./qemu-nographic.sh

OpenSBI v0.9
____ _____ ____ _____
/ __ \ / ____| _ \_ _|
| | | |_ __ ___ _ __ | (___ | |_) || |
| | | | '_ \ / _ \ '_ \ \___ \| _ < | |
| |__| | |_) | __/ | | |____) | |_) || |_
\____/| .__/ \___|_| |_|_____/|____/_____|
| |
|_|

Platform Name : riscv-virtio,qemu
Platform Features : timer,mfdeleg
Platform HART Count : 1
Firmware Base : 0x80000000
Firmware Size : 100 KB
Runtime SBI Version : 0.2

Domain0 Name : root
Domain0 Boot HART : 0
Domain0 HARTs : 0*
Domain0 Region00 : 0x0000000080000000-0x000000008001ffff ()
Domain0 Region01 : 0x0000000000000000-0xffffffffffffffff (R,W,X)
Domain0 Next Address : 0x0000000080200000
Domain0 Next Arg1 : 0x000000008f000000
Domain0 Next Mode : S-mode
Domain0 SysReset : yes

Boot HART ID : 0
Boot HART Domain : root
Boot HART ISA : rv64imafdcsu
Boot HART Features : scounteren,mcounteren,time
Boot HART PMP Count : 16
Boot HART PMP Granularity : 4
Boot HART PMP Address Bits: 54
Boot HART MHPM Count : 0
Boot HART MHPM Count : 0
Boot HART MIDELEG : 0x0000000000000222
Boot HART MEDELEG : 0x000000000000b109
heap: [0x8028d8a8 - 0x8428d8a8]

\ | /
- RT - Thread Operating System
/ | \ 5.2.0 build Nov 14 2024 15:41:57
2006 - 2024 Copyright by RT-Thread team
lwIP-2.0.3 initialized!
[I/sal.skt] Socket Abstraction Layer initialize success.
[I/utest] utest is initialize success.
[I/utest] total utest testcase num: (0)
file system initialization done!
Hello RISC-V
msh />
```

The running results of RT-Thread Smart version are as follows:

```shell
$ ./qemu-nographic.sh

OpenSBI v0.9
____ _____ ____ _____
/ __ \ / ____| _ \_ _|
| | | |_ __ ___ _ __ | (___ | |_) || |
| | | | '_ \ / _ \ '_ \ \___ \| _ < | |
| |__| | |_) | __/ | | |____) | |_) || |_
\____/| .__/ \___|_| |_|_____/|____/_____|
| |
|_|

Platform Name : riscv-virtio,qemu
Platform Features : timer,mfdeleg
Platform HART Count : 1
Firmware Base : 0x80000000
Firmware Size : 100 KB
Runtime SBI Version : 0.2

Domain0 Name : root
Domain0 Boot HART : 0
Domain0 HARTs : 0*
Domain0 Region00 : 0x0000000080000000-0x000000008001ffff ()
Domain0 Region01 : 0x0000000000000000-0xffffffffffffffff (R,W,X)
Domain0 Next Address : 0x0000000080200000
Domain0 Next Arg1 : 0x000000008f000000
Domain0 Next Mode : S-mode
Domain0 SysReset : yes

Boot HART ID : 0
Boot HART Domain : root
Boot HART ISA : rv64imafdcsu
Boot HART Features : scounteren,mcounteren,time
Boot HART PMP Count : 16
Boot HART PMP Granularity : 4
Boot HART PMP Address Bits: 54
Boot HART MHPM Count : 0
Boot HART MHPM Count : 0
Boot HART MIDELEG : 0x0000000000000222
Boot HART MEDELEG : 0x000000000000b109
heap: [0x002ef030 - 0x042ef030]

\ | /
- RT - Thread Smart Operating System
/ | \ 5.2.0 build Nov 14 2024 15:48:43
2006 - 2024 Copyright by RT-Thread team
lwIP-2.0.3 initialized!
[I/sal.skt] Socket Abstraction Layer initialize success.
[I/utest] utest is initialize success.
[I/utest] total utest testcase num: (0)
[I/drivers.serial] Using /dev/ttyS0 as default console
file system initialization done!
Hello RISC-V
msh />
```

# 4. How to use rv64ilp32 toolchain

- Toolchain address: <https://github.com/ruyisdk/riscv-gnu-toolchain-rv64ilp32/tags>

- Usage:

- Configure toolchain path

- Modify ABI parameter to: `-mabi=ilp32d`

- Then perform regular compilation

- Use [script](./qemu-rv64ilp32-nographic.sh) to start QEMU (INFO: QEMU binary is also in the toolchain directory)

- Compare the firmware size of the same project compiled using the traditional 64-bit toolchain and the new 32-bit toolchain:

Steps to build kernel:
Traditional 64-bit toolchain firmware size:

1. in `$RTT_ROOT/bsp/qemu-virt64-riscv/rtconfig.py:40`, make sure `-march=***` and `-mabi=***` is identical to your toolchain
1. if your -march contains characters v/d/f, then: configure kernel by typing `scons --menuconfig` and select `Using RISC-V Vector Extension` / `Enable FPU`
1. `scons`
```bash
Memory region Used Size Region Size %age Used
SRAM: 225856 B 16 MB 1.35%
riscv64-unknown-elf-objcopy -O binary rtthread.elf rtthread.bin
riscv64-unknown-elf-size rtthread.elf
text data bss dec hex filename
150907 3664 71268 225839 3722f rtthread.elf
```

New 32-bit toolchain firmware size:

## 3. Execution
```bash
Memory region Used Size Region Size %age Used
SRAM: 209376 B 16 MB 1.25%
riscv64-unknown-elf-objcopy -O binary rtthread.elf rtthread.bin
riscv64-unknown-elf-size rtthread.elf
text data bss dec hex filename
138739 1356 69276 209371 331db rtthread.elf
```

It's recommended to clone the latest QEMU release and build it locally.
Make sure QEMU is ready by typing `qemu-system-riscv64 --version` in your shell.
# 5. Contact information

Using `qemu-nographic.sh` or `qemu-nographic.bat` to start simulation.
Maintainer: [bernard][1]

> if your -march contains characters v, using qemu-v-nographic.*
[1]: https://github.com/BernardXiong
Loading
Loading