Skip to content

RepairYourTech/vertex-ai-mcp-server

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

15 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Vertex AI MCP Server

smithery badge

This project implements a Model Context Protocol (MCP) server that provides a comprehensive suite of tools for interacting with Google Cloud's Vertex AI Gemini models, focusing on coding assistance and general query answering.

Vertex AI Server MCP server

Features

  • Provides access to Vertex AI Gemini models via numerous MCP tools.
  • Supports web search grounding (answer_query_websearch) and direct knowledge answering (answer_query_direct).
  • Configurable model ID, temperature, streaming behavior, max output tokens, and retry settings via environment variables.
  • Uses streaming API by default for potentially better responsiveness.
  • Includes basic retry logic for transient API errors.
  • Minimal safety filters applied (BLOCK_NONE) to reduce potential blocking (use with caution).

Tools Provided

Query & Generation (AI Focused)

  • answer_query_websearch: Answers a natural language query using the configured Vertex AI model enhanced with Google Search results.
  • answer_query_direct: Answers a natural language query using only the internal knowledge of the configured Vertex AI model.
  • explain_topic_with_docs: Provides a detailed explanation for a query about a specific software topic by synthesizing information primarily from official documentation found via web search.
  • get_doc_snippets: Provides precise, authoritative code snippets or concise answers for technical queries by searching official documentation.
  • generate_project_guidelines: Generates a structured project guidelines document (Markdown) based on a specified list of technologies (optionally with versions), using web search for best practices.

Filesystem Operations

  • read_file_content: Reads the complete contents of a single file.
  • read_multiple_files_content: Reads the contents of multiple files simultaneously.
  • write_file_content: Creates a new file or completely overwrites an existing file with new content.
  • edit_file_content: Makes line-based edits to a text file, returning a diff preview or applying changes.
  • create_directory: Creates a new directory (including nested directories).
  • list_directory_contents: Lists files and directories directly within a specified path (non-recursive).
  • get_directory_tree: Gets a recursive tree view of files and directories as JSON.
  • move_file_or_directory: Moves or renames files and directories.
  • search_filesystem: Recursively searches for files/directories matching a name pattern, with optional exclusions.
  • get_filesystem_info: Retrieves detailed metadata (size, dates, type, permissions) about a file or directory.

Combined AI + Filesystem Operations

  • save_generate_project_guidelines: Generates project guidelines based on a tech stack and saves the result to a specified file path.
  • save_doc_snippet: Finds code snippets from documentation and saves the result to a specified file path.
  • save_topic_explanation: Generates a detailed explanation of a topic based on documentation and saves the result to a specified file path.
  • save_answer_query_direct: Answers a query using only internal knowledge and saves the answer to a specified file path.
  • save_answer_query_websearch: Answers a query using web search results and saves the answer to a specified file path.

(Note: Input/output schemas for each tool are defined in their respective files within src/tools/ and exposed via the MCP server.)

Prerequisites

  • Node.js (v18+)
  • Bun (npm install -g bun)
  • Google Cloud Project with Billing enabled.
  • Vertex AI API enabled in the GCP project.
  • Google Cloud Authentication configured in your environment (Application Default Credentials via gcloud auth application-default login is recommended, or a Service Account Key).

Setup & Installation

  1. Clone/Place Project: Ensure the project files are in your desired location.
  2. Install Dependencies:
    bun install
  3. Configure Environment:
    • Create a .env file in the project root (copy .env.example).
    • Set the required and optional environment variables as described in .env.example.
      • Set AI_PROVIDER to either "vertex" or "gemini".
      • If AI_PROVIDER="vertex", GOOGLE_CLOUD_PROJECT is required.
      • If AI_PROVIDER="gemini", GEMINI_API_KEY is required.
  4. Build the Server:
    bun run build
    This compiles the TypeScript code to build/index.js.

Usage (Standalone / NPX)

Once published to npm, you can run this server directly using npx:

# Ensure required environment variables are set (e.g., GOOGLE_CLOUD_PROJECT)
bunx vertex-ai-mcp-server

Alternatively, install it globally:

bun install -g vertex-ai-mcp-server
# Then run:
vertex-ai-mcp-server

Note: Running standalone requires setting necessary environment variables (like GOOGLE_CLOUD_PROJECT, GOOGLE_CLOUD_LOCATION, authentication credentials if not using ADC) in your shell environment before executing the command.

Installing via Smithery

To install Vertex AI Server for Claude Desktop automatically via Smithery:

bunx -y @smithery/cli install @shariqriazz/vertex-ai-mcp-server --client claude

Running with Cline

  1. Configure MCP Settings: Add/update the configuration in your Cline MCP settings file (e.g., .roo/mcp.json). You have two primary ways to configure the command:

    Option A: Using Node (Direct Path - Recommended for Development)

    This method uses node to run the compiled script directly. It's useful during development when you have the code cloned locally.

    {
      "mcpServers": {
        "vertex-ai-mcp-server": {
          "command": "node",
          "args": [
            "/full/path/to/your/vertex-ai-mcp-server/build/index.js" // Use absolute path or ensure it's relative to where Cline runs node
          ],
          "env": {
            // --- General AI Configuration ---
            "AI_PROVIDER": "vertex", // "vertex" or "gemini"
            // --- Required (Conditional) ---
            "GOOGLE_CLOUD_PROJECT": "YOUR_GCP_PROJECT_ID", // Required if AI_PROVIDER="vertex"
            // "GEMINI_API_KEY": "YOUR_GEMINI_API_KEY", // Required if AI_PROVIDER="gemini"
            // --- Optional Model Selection ---
            "VERTEX_MODEL_ID": "gemini-2.5-pro-exp-03-25", // If AI_PROVIDER="vertex" (Example override)
            "GEMINI_MODEL_ID": "gemini-2.5-pro-exp-03-25", // If AI_PROVIDER="gemini"
            // --- Optional AI Parameters ---
            "GOOGLE_CLOUD_LOCATION": "us-central1", // Specific to Vertex AI
            "AI_TEMPERATURE": "0.0",
            "AI_USE_STREAMING": "true",
            "AI_MAX_OUTPUT_TOKENS": "65536", // Default from .env.example
            "AI_MAX_RETRIES": "3",
            "AI_RETRY_DELAY_MS": "1000",
            // --- Optional Vertex Authentication ---
            // "GOOGLE_APPLICATION_CREDENTIALS": "/path/to/your/service-account-key.json" // If using Service Account Key for Vertex
          },
          "disabled": false,
          "alwaysAllow": [
             // Add tool names here if you don't want confirmation prompts
             // e.g., "answer_query_websearch"
          ],
          "timeout": 3600 // Optional: Timeout in seconds
        }
        // Add other servers here...
      }
    }
    • Important: Ensure the args path points correctly to the build/index.js file. Using an absolute path might be more reliable.

    Option B: Using NPX (Requires Package Published to npm)

    This method uses npx to automatically download and run the server package from the npm registry. This is convenient if you don't want to clone the repository.

    {
      "mcpServers": {
        "vertex-ai-mcp-server": {
          "command": "bunx", // Use bunx
          "args": [
            "-y", // Auto-confirm installation
            "vertex-ai-mcp-server" // The npm package name
          ],
          "env": {
            // --- General AI Configuration ---
            "AI_PROVIDER": "vertex", // "vertex" or "gemini"
            // --- Required (Conditional) ---
            "GOOGLE_CLOUD_PROJECT": "YOUR_GCP_PROJECT_ID", // Required if AI_PROVIDER="vertex"
            // "GEMINI_API_KEY": "YOUR_GEMINI_API_KEY", // Required if AI_PROVIDER="gemini"
            // --- Optional Model Selection ---
            "VERTEX_MODEL_ID": "gemini-2.5-pro-exp-03-25", // If AI_PROVIDER="vertex" (Example override)
            "GEMINI_MODEL_ID": "gemini-2.5-pro-exp-03-25", // If AI_PROVIDER="gemini"
            // --- Optional AI Parameters ---
            "GOOGLE_CLOUD_LOCATION": "us-central1", // Specific to Vertex AI
            "AI_TEMPERATURE": "0.0",
            "AI_USE_STREAMING": "true",
            "AI_MAX_OUTPUT_TOKENS": "65536", // Default from .env.example
            "AI_MAX_RETRIES": "3",
            "AI_RETRY_DELAY_MS": "1000",
            // --- Optional Vertex Authentication ---
            // "GOOGLE_APPLICATION_CREDENTIALS": "/path/to/your/service-account-key.json" // If using Service Account Key for Vertex
          },
          "disabled": false,
          "alwaysAllow": [
             // Add tool names here if you don't want confirmation prompts
             // e.g., "answer_query_websearch"
          ],
          "timeout": 3600 // Optional: Timeout in seconds
        }
        // Add other servers here...
      }
    }
    • Ensure the environment variables in the env block are correctly set, either matching .env or explicitly defined here. Remove comments from the actual JSON file.
  2. Restart/Reload Cline: Cline should detect the configuration change and start the server.

  3. Use Tools: You can now use the extensive list of tools via Cline.

Development

  • Watch Mode: bun run watch
  • Linting: bun run lint
  • Formatting: bun run format

License

This project is licensed under the MIT License - see the LICENSE file for details.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • TypeScript 85.0%
  • JavaScript 14.6%
  • Dockerfile 0.4%