Skip to content

πŸ“š Discover key research papers on Quantum Machine Learning (QML) and explore transfer learning frameworks, applications, and optimization strategies.

Notifications You must be signed in to change notification settings

Romainiaccc/awesome-QAI-Papers-QML

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

2 Commits
Β 
Β 
Β 
Β 

Repository files navigation

πŸ”„ awesome-QAI-Papers-QML - Explore Quantum Machine Learning Papers

Download Releases

πŸš€ Getting Started

Welcome to the awesome-QAI-Papers-QML repository! This platform showcases essential research papers in Quantum Machine Learning (QML). Follow the steps below to get the most out of this resource.

πŸ“₯ Download & Install

To access the research papers, you need to visit the Releases page. Click the link below:

Download Papers

On the Releases page, you will find a list of papers. Each entry includes a brief description and a download link. Select the papers that interest you and download them directly to your device.

πŸ“š Scope

This repository focuses on key topics in Quantum Machine Learning:

  • Transfer Learning: Understand how learned quantum circuit parameters can be transferred between tasks.
  • Hybrid Frameworks: Explore frameworks combining classical and quantum learning methods.
  • Applications: Discover applications in fields like physics, chemistry, medical imaging, and natural language processing.
  • Optimization Strategies: Learn about techniques to address issues like barren plateaus in quantum training.
  • Cross-Domain Transfer: See how quantum models can be utilized for real-world challenges across different domains.

πŸ—‚οΈ Papers List

The following papers are available for download:

Title
Paper 1: Title Here - Brief description of what the paper covers.
Paper 2: Title Here - Brief description of what the paper covers.
Paper 3: Title Here - Brief description of what the paper covers.
Paper 4: Title Here - Brief description of what the paper covers.

βš™οΈ System Requirements

To ensure a smooth experience, make sure your system meets the following requirements:

  • Operating System: Windows, macOS, or Linux
  • Memory: At least 4 GB RAM
  • Storage: At least 100 MB of free space for downloads
  • Internet Connection: Required for downloading papers

πŸ“– How to Read the Papers

Once you've downloaded the papers, you can open them using a PDF reader or any text file viewer. If you encounter any issues, ensure you have the latest version of your reader software.

🀝 Contributing

If you have any papers or resources to add, feel free to contribute! Fork the repository and submit a pull request with your additions. Your contributions help enhance the learning experience for everyone.

πŸ“ž Support

If you have questions or need assistance, you can open an issue on the GitHub page. We will respond as quickly as possible.

Thank you for your interest in Quantum Machine Learning! Enjoy exploring the research papers.

About

πŸ“š Discover key research papers on Quantum Machine Learning (QML) and explore transfer learning frameworks, applications, and optimization strategies.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published