forked from cline/cline
-
Notifications
You must be signed in to change notification settings - Fork 2.4k
Feat: Add Minimax Provider (fixes #8818) #8820
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
mrubens
merged 15 commits into
RooCodeInc:main
from
jennychenziying-spec:feat/add_minimax_ai
Oct 29, 2025
Merged
Changes from 7 commits
Commits
Show all changes
15 commits
Select commit
Hold shift + click to select a range
3358018
feat: add minimax provider
6e72342
feat: param
de035bc
Merge branch 'main' into feat/add_minimax_ai
03e5384
fea: add m2
c6ab1f8
feat: format model
8cd9e53
feat: format model
d8c44a4
feat: format test
3e405a8
feat: doc
c4aaf94
Merge branch 'main' into feat/add_minimax_ai
7fa7e16
feat: fix test
d291030
feat: format code
7a860f6
feat: code
a40c25f
Handle thinking
mrubens 903255d
Update packages/types/src/providers/minimax.ts
mrubens f7db71b
Fix tests
mrubens File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,22 @@ | ||
| import type { ModelInfo } from "../model.js" | ||
|
|
||
| // Minimax | ||
| // https://www.minimax.io/platform/document/text_api_intro | ||
| // https://www.minimax.io/platform/document/pricing | ||
| export type MinimaxModelId = keyof typeof minimaxModels | ||
| export const minimaxDefaultModelId: MinimaxModelId = "MiniMax-M2" | ||
|
|
||
| export const minimaxModels = { | ||
| "MiniMax-M2": { | ||
| maxTokens: 128_000, | ||
| contextWindow: 192_000, | ||
| supportsImages: false, | ||
| supportsPromptCache: false, | ||
| inputPrice: 0.3, | ||
| outputPrice: 1.2, | ||
| cacheWritesPrice: 0, | ||
| cacheReadsPrice: 0, | ||
| }, | ||
| } as const satisfies Record<string, ModelInfo> | ||
|
|
||
| export const MINIMAX_DEFAULT_TEMPERATURE = 1.0 | ||
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,277 @@ | ||
| // npx vitest run src/api/providers/__tests__/minimax.spec.ts | ||
|
|
||
| vitest.mock("vscode", () => ({ | ||
| workspace: { | ||
| getConfiguration: vitest.fn().mockReturnValue({ | ||
| get: vitest.fn().mockReturnValue(600), // Default timeout in seconds | ||
| }), | ||
| }, | ||
| })) | ||
|
|
||
| import OpenAI from "openai" | ||
| import { Anthropic } from "@anthropic-ai/sdk" | ||
|
|
||
| import { type MinimaxModelId, minimaxDefaultModelId, minimaxModels } from "@roo-code/types" | ||
|
|
||
| import { MiniMaxHandler } from "../minimax" | ||
|
|
||
| vitest.mock("openai", () => { | ||
| const createMock = vitest.fn() | ||
| return { | ||
| default: vitest.fn(() => ({ chat: { completions: { create: createMock } } })), | ||
| } | ||
| }) | ||
|
|
||
| describe("MiniMaxHandler", () => { | ||
| let handler: MiniMaxHandler | ||
| let mockCreate: any | ||
|
|
||
| beforeEach(() => { | ||
| vitest.clearAllMocks() | ||
| mockCreate = (OpenAI as unknown as any)().chat.completions.create | ||
| }) | ||
|
|
||
| describe("International MiniMax (default)", () => { | ||
| beforeEach(() => { | ||
| handler = new MiniMaxHandler({ | ||
| minimaxApiKey: "test-minimax-api-key", | ||
| minimaxBaseUrl: "https://api.minimax.io/v1", | ||
| }) | ||
| }) | ||
|
|
||
| it("should use the correct international MiniMax base URL by default", () => { | ||
| new MiniMaxHandler({ minimaxApiKey: "test-minimax-api-key" }) | ||
| expect(OpenAI).toHaveBeenCalledWith( | ||
| expect.objectContaining({ | ||
| baseURL: "https://api.minimax.io/v1", | ||
| }), | ||
| ) | ||
| }) | ||
|
|
||
| it("should use the provided API key", () => { | ||
| const minimaxApiKey = "test-minimax-api-key" | ||
| new MiniMaxHandler({ minimaxApiKey }) | ||
| expect(OpenAI).toHaveBeenCalledWith(expect.objectContaining({ apiKey: minimaxApiKey })) | ||
| }) | ||
|
|
||
| it("should return default model when no model is specified", () => { | ||
| const model = handler.getModel() | ||
| expect(model.id).toBe(minimaxDefaultModelId) | ||
| expect(model.info).toEqual(minimaxModels[minimaxDefaultModelId]) | ||
| }) | ||
|
|
||
| it("should return specified model when valid model is provided", () => { | ||
| const testModelId: MinimaxModelId = "MiniMax-M2" | ||
| const handlerWithModel = new MiniMaxHandler({ | ||
| apiModelId: testModelId, | ||
| minimaxApiKey: "test-minimax-api-key", | ||
| }) | ||
| const model = handlerWithModel.getModel() | ||
| expect(model.id).toBe(testModelId) | ||
| expect(model.info).toEqual(minimaxModels[testModelId]) | ||
| }) | ||
|
|
||
| it("should return MiniMax-M2 model with correct configuration", () => { | ||
| const testModelId: MinimaxModelId = "MiniMax-M2" | ||
| const handlerWithModel = new MiniMaxHandler({ | ||
| apiModelId: testModelId, | ||
| minimaxApiKey: "test-minimax-api-key", | ||
| }) | ||
| const model = handlerWithModel.getModel() | ||
| expect(model.id).toBe(testModelId) | ||
| expect(model.info).toEqual(minimaxModels[testModelId]) | ||
| expect(model.info.contextWindow).toBe(192_000) | ||
| expect(model.info.maxTokens).toBe(128_000) | ||
mrubens marked this conversation as resolved.
Outdated
Show resolved
Hide resolved
|
||
| expect(model.info.supportsPromptCache).toBe(false) | ||
| }) | ||
| }) | ||
|
|
||
| describe("China MiniMax", () => { | ||
| beforeEach(() => { | ||
| handler = new MiniMaxHandler({ | ||
| minimaxApiKey: "test-minimax-api-key", | ||
| minimaxBaseUrl: "https://api.minimaxi.com/v1", | ||
| }) | ||
| }) | ||
|
|
||
| it("should use the correct China MiniMax base URL", () => { | ||
| new MiniMaxHandler({ | ||
| minimaxApiKey: "test-minimax-api-key", | ||
| minimaxBaseUrl: "https://api.minimaxi.com/v1", | ||
| }) | ||
| expect(OpenAI).toHaveBeenCalledWith(expect.objectContaining({ baseURL: "https://api.minimaxi.com/v1" })) | ||
| }) | ||
|
|
||
| it("should use the provided API key for China", () => { | ||
| const minimaxApiKey = "test-minimax-api-key" | ||
| new MiniMaxHandler({ minimaxApiKey, minimaxBaseUrl: "https://api.minimaxi.com/v1" }) | ||
| expect(OpenAI).toHaveBeenCalledWith(expect.objectContaining({ apiKey: minimaxApiKey })) | ||
| }) | ||
|
|
||
| it("should return default model when no model is specified", () => { | ||
| const model = handler.getModel() | ||
| expect(model.id).toBe(minimaxDefaultModelId) | ||
| expect(model.info).toEqual(minimaxModels[minimaxDefaultModelId]) | ||
| }) | ||
| }) | ||
|
|
||
| describe("Default behavior", () => { | ||
| it("should default to international base URL when none is specified", () => { | ||
| const handlerDefault = new MiniMaxHandler({ minimaxApiKey: "test-minimax-api-key" }) | ||
| expect(OpenAI).toHaveBeenCalledWith( | ||
| expect.objectContaining({ | ||
| baseURL: "https://api.minimax.io/v1", | ||
| }), | ||
| ) | ||
|
|
||
| const model = handlerDefault.getModel() | ||
| expect(model.id).toBe(minimaxDefaultModelId) | ||
| expect(model.info).toEqual(minimaxModels[minimaxDefaultModelId]) | ||
| }) | ||
|
|
||
| it("should default to MiniMax-M2 model", () => { | ||
| const handlerDefault = new MiniMaxHandler({ minimaxApiKey: "test-minimax-api-key" }) | ||
| const model = handlerDefault.getModel() | ||
| expect(model.id).toBe("MiniMax-M2") | ||
| }) | ||
| }) | ||
|
|
||
| describe("API Methods", () => { | ||
| beforeEach(() => { | ||
| handler = new MiniMaxHandler({ minimaxApiKey: "test-minimax-api-key" }) | ||
| }) | ||
|
|
||
| it("completePrompt method should return text from MiniMax API", async () => { | ||
| const expectedResponse = "This is a test response from MiniMax" | ||
| mockCreate.mockResolvedValueOnce({ choices: [{ message: { content: expectedResponse } }] }) | ||
| const result = await handler.completePrompt("test prompt") | ||
| expect(result).toBe(expectedResponse) | ||
| }) | ||
|
|
||
| it("should handle errors in completePrompt", async () => { | ||
| const errorMessage = "MiniMax API error" | ||
| mockCreate.mockRejectedValueOnce(new Error(errorMessage)) | ||
| await expect(handler.completePrompt("test prompt")).rejects.toThrow() | ||
| }) | ||
|
|
||
| it("createMessage should yield text content from stream", async () => { | ||
| const testContent = "This is test content from MiniMax stream" | ||
|
|
||
| mockCreate.mockImplementationOnce(() => { | ||
| return { | ||
| [Symbol.asyncIterator]: () => ({ | ||
| next: vitest | ||
| .fn() | ||
| .mockResolvedValueOnce({ | ||
| done: false, | ||
| value: { choices: [{ delta: { content: testContent } }] }, | ||
| }) | ||
| .mockResolvedValueOnce({ done: true }), | ||
| }), | ||
| } | ||
| }) | ||
|
|
||
| const stream = handler.createMessage("system prompt", []) | ||
| const firstChunk = await stream.next() | ||
|
|
||
| expect(firstChunk.done).toBe(false) | ||
| expect(firstChunk.value).toEqual({ type: "text", text: testContent }) | ||
| }) | ||
|
|
||
| it("createMessage should yield usage data from stream", async () => { | ||
| mockCreate.mockImplementationOnce(() => { | ||
| return { | ||
| [Symbol.asyncIterator]: () => ({ | ||
| next: vitest | ||
| .fn() | ||
| .mockResolvedValueOnce({ | ||
| done: false, | ||
| value: { | ||
| choices: [{ delta: {} }], | ||
| usage: { prompt_tokens: 10, completion_tokens: 20 }, | ||
| }, | ||
| }) | ||
| .mockResolvedValueOnce({ done: true }), | ||
| }), | ||
| } | ||
| }) | ||
|
|
||
| const stream = handler.createMessage("system prompt", []) | ||
| const firstChunk = await stream.next() | ||
|
|
||
| expect(firstChunk.done).toBe(false) | ||
| expect(firstChunk.value).toEqual({ type: "usage", inputTokens: 10, outputTokens: 20 }) | ||
| }) | ||
|
|
||
| it("createMessage should pass correct parameters to MiniMax client", async () => { | ||
| const modelId: MinimaxModelId = "MiniMax-M2" | ||
| const modelInfo = minimaxModels[modelId] | ||
| const handlerWithModel = new MiniMaxHandler({ | ||
| apiModelId: modelId, | ||
| minimaxApiKey: "test-minimax-api-key", | ||
| }) | ||
|
|
||
| mockCreate.mockImplementationOnce(() => { | ||
| return { | ||
| [Symbol.asyncIterator]: () => ({ | ||
| async next() { | ||
| return { done: true } | ||
| }, | ||
| }), | ||
| } | ||
| }) | ||
|
|
||
| const systemPrompt = "Test system prompt for MiniMax" | ||
| const messages: Anthropic.Messages.MessageParam[] = [{ role: "user", content: "Test message for MiniMax" }] | ||
|
|
||
| const messageGenerator = handlerWithModel.createMessage(systemPrompt, messages) | ||
| await messageGenerator.next() | ||
|
|
||
| expect(mockCreate).toHaveBeenCalledWith( | ||
| expect.objectContaining({ | ||
| model: modelId, | ||
| max_tokens: modelInfo.maxTokens, | ||
| temperature: 1, | ||
| messages: expect.arrayContaining([{ role: "system", content: systemPrompt }]), | ||
| stream: true, | ||
| stream_options: { include_usage: true }, | ||
| }), | ||
| undefined, | ||
| ) | ||
| }) | ||
|
|
||
| it("should use temperature 1 by default", async () => { | ||
| mockCreate.mockImplementationOnce(() => { | ||
| return { | ||
| [Symbol.asyncIterator]: () => ({ | ||
| async next() { | ||
| return { done: true } | ||
| }, | ||
| }), | ||
| } | ||
| }) | ||
|
|
||
| const messageGenerator = handler.createMessage("test", []) | ||
| await messageGenerator.next() | ||
|
|
||
| expect(mockCreate).toHaveBeenCalledWith( | ||
| expect.objectContaining({ | ||
| temperature: 1, | ||
| }), | ||
| undefined, | ||
| ) | ||
| }) | ||
| }) | ||
|
|
||
| describe("Model Configuration", () => { | ||
| it("should correctly configure MiniMax-M2 model properties", () => { | ||
| const model = minimaxModels["MiniMax-M2"] | ||
| expect(model.maxTokens).toBe(128_000) | ||
mrubens marked this conversation as resolved.
Outdated
Show resolved
Hide resolved
|
||
| expect(model.contextWindow).toBe(192_000) | ||
| expect(model.supportsImages).toBe(false) | ||
| expect(model.supportsPromptCache).toBe(false) | ||
| expect(model.inputPrice).toBe(0.3) | ||
| expect(model.outputPrice).toBe(1.2) | ||
| }) | ||
| }) | ||
| }) | ||
Oops, something went wrong.
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Uh oh!
There was an error while loading. Please reload this page.