PODImodels (Proper Orthogonal Decomposition-based Interpolation Models) is a Python package for creating Reduced-Order Models (ROM) using POD combined with various machine learning techniques. It provides a unified framework for reduced-order modeling of high-dimensional field data, particularly useful for computational fluid dynamics and other physics-based simulations.
- Multiple Interpolation Methods: Support for Linear Regression, Ridge Regression, Gaussian Process Regression (GPR), Radial Basis Functions (RBF), and Artificial Neural Networks (ANN)
- Flexible Modeling Approaches: Choose between direct field prediction or POD coefficient interpolation
- Easy-to-Use API: Scikit-learn-inspired interface with
fit()andpredict()methods - Built-in Scaling: Optional data normalization for improved model performance
- Extensible Architecture: Abstract base class for implementing custom interpolation models
Install PODImodels using pip:
pip install PODImodelsFor development installation:
git clone https://github.com/Ruansh233/PODImodels.git
cd PODImodels
pip install -e .- Python >= 3.8
- numpy
- scikit-learn
- scipy
- pyvista
- torch
All dependencies will be automatically installed with the package.
import numpy as np
from PODImodels import PODGPR, fieldsRBF
# Prepare your data
# parameters: (n_samples, n_parameters)
# field_snapshots: (n_samples, n_field_points)
parameters = np.random.rand(100, 3)
field_snapshots = np.random.rand(100, 10000)
# Example 1: POD with Gaussian Process Regression
model = PODGPR(rank=15, with_scaler_x=True, with_scaler_y=True)
model.fit(parameters, field_snapshots)
predictions = model.predict(new_parameters)
# Example 2: Direct field prediction with Radial Basis Functions
model = fieldsRBF(kernel='thin_plate_spline', degree=2)
model.fit(parameters, field_snapshots)
field_prediction = model.predict(test_parameters)PODImodels provides two categories of models:
- Direct Field Models (
fields*): Learn direct mapping from parameters to field values - POD Coefficient Models (
POD*): Learn mapping from parameters to POD coefficients (more efficient for large fields)
fieldsLinear: Direct field prediction using linear regressionPODLinear: POD coefficient prediction using linear regressionfieldsRidge: Direct field prediction using Ridge regressionPODRidge: POD coefficient prediction using Ridge regression
fieldsGPR: Direct field prediction using Gaussian Process RegressionPODGPR: POD coefficient prediction using Gaussian Process RegressionfieldsRidgeGPR: Field prediction with Ridge regularization and GPRPODRidgeGPR: POD coefficient prediction with Ridge regularization and GPR
fieldsRBF: Direct field prediction using Radial Basis Function interpolationPODRBF: POD coefficient prediction using Radial Basis Function interpolationfieldsRidgeRBF: Field prediction with Ridge regularization and RBFPODRidgeRBF: POD coefficient prediction with Ridge regularization and RBF
PODANN: POD coefficient prediction using Artificial Neural Networks
from PODImodels import PODGPR
import numpy as np
# Load your simulation data
# X: Design parameters (e.g., Reynolds number, geometry params)
# Y: Field snapshots (e.g., velocity, pressure fields)
X_train = np.load('parameters.npy') # shape: (n_samples, n_params)
Y_train = np.load('fields.npy') # shape: (n_samples, n_points)
# Initialize model with 20 POD modes
model = PODGPR(rank=20, with_scaler_x=True, with_scaler_y=True)
# Train the model
model.fit(X_train, Y_train)
# Predict new fields
X_test = np.array([[100, 0.5, 1.2]]) # New parameter set
Y_pred = model.predict(X_test)from PODImodels import fieldsRBF
# Initialize RBF model
model = fieldsRBF(
kernel='thin_plate_spline',
degree=2,
with_scaler_x=True
)
# Train and predict
model.fit(X_train, Y_train)
Y_pred = model.predict(X_test)from PODImodels import PODANN
# Initialize ANN model
model = PODANN(
rank=15,
hidden_layers=[64, 32],
activation='relu',
epochs=100
)
model.fit(X_train, Y_train)
Y_pred = model.predict(X_test)- Linear/Ridge: Fast, interpretable, works well for linear relationships
- GPR: Best for smooth, continuous fields with uncertainty quantification
- RBF: Excellent for scattered data interpolation
- ANN: Powerful for complex nonlinear relationships, requires more data
Choose POD* models when dealing with large field dimensions (>1000 points) for better computational efficiency.
For detailed documentation and API reference, visit the GitHub repository.
Contributions are welcome! Please feel free to submit a Pull Request. For major changes, please open an issue first to discuss what you would like to change.
If you use PODImodels in your research, please cite:
@software{PODImodels2024,
author = {Ruan, Shenhui},
title = {PODImodels: POD-based Interpolation Models for Reduced-Order Modeling},
year = {2024},
url = {https://github.com/Ruansh233/PODImodels}
}This project is licensed under the MIT License - see the LICENSE file for details.
Shenhui Ruan
Email: shenhui.ruan@kit.edu
GitHub: @Ruansh233
This package was developed for reduced-order modeling in computational physics applications, with a focus on CFD simulations.