Creates one .txt transcript file per "Sprint" video published in the last 30 days
from the hardcoded YouTube playlists, then generates a per-product summary file
using the OpenAI API.
python -m venv .venv
.\.venv\Scripts\Activate.ps1
pip install -r requirements.txtpython .\sprint_transcripts.pyThe script will read OPENAI_API_KEY (and optional OPENAI_MODEL) from your
user environment variables. If you prefer a local file, it will also read from a
.env file if present. You can copy .env.example to .env and fill in your key:
Copy-Item .env.example .envOr set the environment variables for just this session:
$env:OPENAI_API_KEY="YOUR_KEY_HERE"
# optional: choose a different model
# $env:OPENAI_MODEL="gpt-5"
# optional: tell yt-dlp which JS runtimes to try (comma-separated)
# $env:YTDLP_JS_RUNTIMES="node,deno"
# optional: point yt-dlp at ffmpeg if it's not on PATH
# $env:YTDLP_FFMPEG_LOCATION="C:\Path\To\ffmpeg\bin"Output folder: a subfolder named with the run date (YYYY-MM-DD) in the current directory.
The summary prompt is loaded from prompt.txt in the project folder if present.
You can edit this file to tweak the bullet style. The template supports:
{product}for the product name{max_bullets}for the current bullet limit