Skip to content

Library of models for Protein Function prediction (part of the 18th top solution out of 1625 teams in CAFA5)

Notifications You must be signed in to change notification settings

SamusRam/ProFun

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 

Repository files navigation

ProFun

Library of models for Protein Function prediction

Installation

The majority of dependencies will be installed automatically via the command

pip install git+https://github.com/SamusRam/ProFun.git

If you want to use the BLAST-based model, please run these commands:

wget https://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/2.14.0/ncbi-blast-2.14.0+-x64-linux.tar.gz
tar zxvpf ncbi-blast-2.14.0+-x64-linux.tar.gz
# add ncbi-blast-2.14.0+/bin to PATH

If you want to use profile Hidden Markov models, please run the following commands:

conda install -c bioconda mafft -y
conda install -c bioconda hmmer -y

If you want to use Foldseek-based model, please run the following command:

conda install -c conda-forge -c bioconda foldseek -y

Basic usage

BLAST

Please see this notebook as a usage demo.

from profun.models import BlastMatching, BlastConfig
from profun.utils.project_info import ExperimentInfo

experiment_info = ExperimentInfo(validation_schema='public_lb', 
                                 model_type='blast', model_version='1nn')

config = BlastConfig(experiment_info=experiment_info, 
                      id_col_name='EntryID', 
                      target_col_name='term', 
                      seq_col_name='Seq', 
                      class_names=list(train_df_long['term'].unique()), 
                      optimize_hyperparams=False, 
                      n_calls_hyperparams_opt=None,
                      hyperparam_dimensions=None,
                      per_class_optimization=None,
                      class_weights=None,
                      n_neighbours=5,
                      e_threshold=0.0001,
                      n_jobs=100,
                      pred_batch_size=10
                    )

blast_model = BlastMatching(config)

# fit
blast_model.fit(train_df_long)

# predict
test_pred_df = blast_model.predict_proba(test_seqs_df.sample(42).drop_duplicates('EntryID'), return_long_df=True)

Profile Hidden Markov model

from profun.models import ProfileHMM, HmmConfig
from profun.utils.project_info import ExperimentInfo

experiment_info = ExperimentInfo(validation_schema='public_lb', 
                                 model_type='profileHMM', model_version='24additional')

config = HmmConfig(experiment_info=experiment_info, 
                     id_col_name='EntryID', 
                     target_col_name='term', 
                     seq_col_name='Seq', 
                     class_names=list(additional_classes), 
                     optimize_hyperparams=False, 
                     n_calls_hyperparams_opt=None,
                     hyperparam_dimensions=None,
                     per_class_optimization=None,
                     class_weights=None,
                     search_e_threshold=0.000001,
                     zero_conf_level=0.00001,
                     group_column_name='taxonomyID',
                     n_jobs=56,
                     pred_batch_size=20000)

hmm_model = ProfileHMM(config)
hmm_model.fit(train_df_long)
test_pred_df = hmm_model.predict_proba(test_seqs_df.drop_duplicates('EntryID'), return_long_df=True)

Foldseek-based classifier

Please see this notebook as a usage demo.

from profun.models import FoldseekMatching, FoldseekConfig
from profun.utils.project_info import ExperimentInfo

experiment_info = ExperimentInfo(validation_schema='public_lb', 
                                 model_type='foldseek', model_version='5nn')

config = FoldseekConfig(experiment_info=experiment_info, 
                        id_col_name='EntryID', 
                        target_col_name='term',
                        seq_col_name='Seq',
                        class_names=list(train_df_long_sample['term'].unique()), 
                        optimize_hyperparams=False, 
                        n_calls_hyperparams_opt=None,
                        hyperparam_dimensions=None,
                        per_class_optimization=None,
                        class_weights=None,
                        n_neighbours=5,
                        e_threshold=0.0001,
                        n_jobs=56,
                        pred_batch_size=10,
                        local_pdb_storage_path=None #then it stores structures into the working dir
                    )

model = FoldseekMatching(config)
model.fit(train_df_long)
test_pred_df = model.predict_proba(test_seqs_df.drop_duplicates('EntryID'), return_long_df=True)

About

Library of models for Protein Function prediction (part of the 18th top solution out of 1625 teams in CAFA5)

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages