@@ -8,7 +8,7 @@ Linear ODE
8
8
\\ frac{du}{dt} = αu
9
9
```
10
10
11
- with initial condition ``u_0=1/2 ``, ``α=1.01``, and solution
11
+ with initial condition ``u_0=\f rac{1}{2} ``, ``α=1.01``, and solution
12
12
13
13
```math
14
14
u(t) = u_0e^{αt}
@@ -27,7 +27,7 @@ Linear ODE
27
27
\\ frac{du}{dt} = αu
28
28
```
29
29
30
- with initial condition ``u_0=1/2 ``, ``α=1.01``, and solution
30
+ with initial condition ``u_0=\f rac{1}{2} ``, ``α=1.01``, and solution
31
31
32
32
```math
33
33
u(t) = u_0e^{αt}
@@ -48,7 +48,8 @@ f_2dlinear_analytic = (u0,p,t) -> @. u0*exp(p*t)
48
48
\\ frac{du}{dt} = αu
49
49
```
50
50
51
- with initial condition ``u_0=1/2``, ``α=1.01``, and solution
51
+ with initial condition ``u_0`` as all uniformly distributed random numbers,
52
+ ``α=1.01``, and solution
52
53
53
54
```math
54
55
u(t) = u_0e^{αt}
@@ -67,7 +68,8 @@ prob_ode_2Dlinear = ODEProblem(
67
68
\\ frac{du}{dt} = αu
68
69
```
69
70
70
- with initial condition ``u_0=1/2``, ``α=1.01``, and solution
71
+ with initial condition ``u_0`` as all uniformly distributed random numbers,
72
+ ``α=1.01``, and solution
71
73
72
74
```math
73
75
u(t) = u_0e^{αt}
@@ -86,7 +88,8 @@ prob_ode_large2Dlinear = ODEProblem(
86
88
\\ frac{du}{dt} = αu
87
89
```
88
90
89
- with initial condition ``u_0=1/2``, ``α=1.01``, and solution
91
+ with initial condition ``u_0`` as all uniformly distributed random numbers,
92
+ ``α=1.01``, and solution
90
93
91
94
```math
92
95
u(t) = u_0e^{αt}
@@ -106,7 +109,8 @@ f_2dlinear_notinplace = (u,p,t) -> p*u
106
109
\\ frac{du}{dt} = αu
107
110
```
108
111
109
- with initial condition ``u_0=1/2``, ``α=1.01``, and solution
112
+ with initial condition ``u_0`` as all uniformly distributed random numbers,
113
+ ``α=1.01``, and solution
110
114
111
115
```math
112
116
u(t) = u_0e^{αt}
0 commit comments