Skip to content
Merged
Show file tree
Hide file tree
Changes from 6 commits
Commits
Show all changes
24 commits
Select commit Hold shift + click to select a range
6b0f03c
Created change of variable for SDE
May 29, 2025
24ebd99
Merge branch 'iss141'
May 29, 2025
e0bb5d2
Implement and fix change of variable for ODE
Jun 3, 2025
86411c2
Merge branch 'SciML:master' into master
fchen121 Jun 3, 2025
22ab624
Implement change of variables for sde
Jun 4, 2025
8ace5e7
Merge branch 'SciML:master' into master
fchen121 Jun 4, 2025
50a4fc3
Fix Linear transformation to diagonal system test
Jun 5, 2025
a1e9944
Update Project.toml
Jun 5, 2025
7b3ea99
Merge branch 'master' of https://github.com/fchen121/ModelingToolkit.jl
Jun 5, 2025
e33bcc1
Change backward subs from observed to equations
Jun 5, 2025
192872c
Change of variables for multiple Brownian SDE
Jun 5, 2025
9a53121
Improve change of variables test
Jun 5, 2025
8140b62
Combined change of variable function for ODE and SDE
Jun 6, 2025
c0453f4
Change of variable for non-simplified SDE
Jun 9, 2025
166b0f8
Update test/changeofvariables.jl
ChrisRackauckas Jun 10, 2025
0884e59
Update src/systems/diffeqs/basic_transformations.jl
ChrisRackauckas Jun 11, 2025
70a5b39
Update Project.toml
ChrisRackauckas Jun 11, 2025
2d5c9e7
Update Project.toml
ChrisRackauckas Jun 11, 2025
2b32ad4
Update Project.toml
ChrisRackauckas Jun 11, 2025
2b48648
Update Project.toml
ChrisRackauckas Jun 11, 2025
07affe6
Update Project.toml
ChrisRackauckas Jun 11, 2025
7d5e915
Update src/ModelingToolkit.jl
ChrisRackauckas Jun 11, 2025
5367f60
Merge branch 'SciML:master' into master
fchen121 Jun 12, 2025
96609b3
Update runtests.jl
ChrisRackauckas Jun 12, 2025
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 5 additions & 0 deletions Project.toml
Original file line number Diff line number Diff line change
Expand Up @@ -44,7 +44,9 @@ NaNMath = "77ba4419-2d1f-58cd-9bb1-8ffee604a2e3"
NonlinearSolve = "8913a72c-1f9b-4ce2-8d82-65094dcecaec"
OffsetArrays = "6fe1bfb0-de20-5000-8ca7-80f57d26f881"
OrderedCollections = "bac558e1-5e72-5ebc-8fee-abe8a469f55d"
OrdinaryDiffEq = "1dea7af3-3e70-54e6-95c3-0bf5283fa5ed"
OrdinaryDiffEqCore = "bbf590c4-e513-4bbe-9b18-05decba2e5d8"
OrdinaryDiffEqDefault = "50262376-6c5a-4cf5-baba-aaf4f84d72d7"
PrecompileTools = "aea7be01-6a6a-4083-8856-8a6e6704d82a"
RecursiveArrayTools = "731186ca-8d62-57ce-b412-fbd966d074cd"
Reexport = "189a3867-3050-52da-a836-e630ba90ab69"
Expand All @@ -59,9 +61,11 @@ SimpleNonlinearSolve = "727e6d20-b764-4bd8-a329-72de5adea6c7"
SparseArrays = "2f01184e-e22b-5df5-ae63-d93ebab69eaf"
SpecialFunctions = "276daf66-3868-5448-9aa4-cd146d93841b"
StaticArrays = "90137ffa-7385-5640-81b9-e52037218182"
StochasticDiffEq = "789caeaf-c7a9-5a7d-9973-96adeb23e2a0"
SymbolicIndexingInterface = "2efcf032-c050-4f8e-a9bb-153293bab1f5"
SymbolicUtils = "d1185830-fcd6-423d-90d6-eec64667417b"
Symbolics = "0c5d862f-8b57-4792-8d23-62f2024744c7"
Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40"
URIs = "5c2747f8-b7ea-4ff2-ba2e-563bfd36b1d4"
UnPack = "3a884ed6-31ef-47d7-9d2a-63182c4928ed"
Unitful = "1986cc42-f94f-5a68-af5c-568840ba703d"
Expand Down Expand Up @@ -159,6 +163,7 @@ StochasticDiffEq = "6.72.1"
SymbolicIndexingInterface = "0.3.39"
SymbolicUtils = "3.26.1"
Symbolics = "6.40"
Test = "1.11.0"
URIs = "1"
UnPack = "0.1, 1.0"
Unitful = "1.1"
Expand Down
2 changes: 1 addition & 1 deletion src/ModelingToolkit.jl
Original file line number Diff line number Diff line change
Expand Up @@ -297,7 +297,7 @@ export isinput, isoutput, getbounds, hasbounds, getguess, hasguess, isdisturbanc
hasunit, getunit, hasconnect, getconnect,
hasmisc, getmisc, state_priority
export liouville_transform, change_independent_variable, substitute_component,
add_accumulations, noise_to_brownians, Girsanov_transform
add_accumulations, noise_to_brownians, Girsanov_transform, changeofvariables, change_of_variable_SDE
export PDESystem
export Differential, expand_derivatives, @derivatives
export Equation, ConstrainedEquation
Expand Down
147 changes: 147 additions & 0 deletions src/systems/diffeqs/basic_transformations.jl
Original file line number Diff line number Diff line change
Expand Up @@ -53,6 +53,153 @@ function liouville_transform(sys::System; kwargs...)
)
end

"""
$(TYPEDSIGNATURES)

Generates the set of ODEs after change of variables.


Example:

```julia
using ModelingToolkit, OrdinaryDiffEq, Test

# Change of variables: z = log(x)
# (this implies that x = exp(z) is automatically non-negative)

@parameters t α
@variables x(t)
D = Differential(t)
eqs = [D(x) ~ α*x]

tspan = (0., 1.)
u0 = [x => 1.0]
p = [α => -0.5]

@named sys = ODESystem(eqs; defaults=u0)
prob = ODEProblem(sys, [], tspan, p)
sol = solve(prob, Tsit5())

@variables z(t)
forward_subs = [log(x) => z]
backward_subs = [x => exp(z)]

@named new_sys = changeofvariables(sys, forward_subs, backward_subs)
@test equations(new_sys)[1] == (D(z) ~ α)

new_prob = ODEProblem(new_sys, [], tspan, p)
new_sol = solve(new_prob, Tsit5())

@test isapprox(new_sol[x][end], sol[x][end], atol=1e-4)
```

"""
function changeofvariables(sys::System, iv, forward_subs, backward_subs; simplify=true, t0=missing)
t = iv

old_vars = first.(backward_subs)
new_vars = last.(forward_subs)
# kept_vars = setdiff(states(sys), old_vars)
# rhs = [eq.rhs for eq in equations(sys)]

# use: dz/dt = ∂z/∂x dx/dt + ∂z/∂t
dzdt = Symbolics.derivative( first.(forward_subs), t )
new_eqs = Equation[]
for (new_var, ex) in zip(new_vars, dzdt)
for ode_eq in equations(sys)
ex = substitute(ex, ode_eq.lhs => ode_eq.rhs)
end
ex = substitute(ex, Dict(forward_subs))
ex = substitute(ex, Dict(backward_subs))
if simplify
ex = Symbolics.simplify(ex, expand=true)
end
push!(new_eqs, Differential(t)(new_var) ~ ex)
end

defs = get_defaults(sys)
new_defs = Dict()
for f_sub in forward_subs
ex = substitute(first(f_sub), defs)
if !ismissing(t0)
ex = substitute(ex, t => t0)
end
new_defs[last(f_sub)] = ex
end
for para in parameters(sys)
if haskey(defs, para)
new_defs[para] = defs[para]
end
end
@named new_sys = System(new_eqs, t;
defaults=new_defs,
observed=vcat(observed(sys),first.(backward_subs) .~ last.(backward_subs))
)
if simplify
return mtkcompile(new_sys)
end
return new_sys
end

function change_of_variable_SDE(sys::System, iv, forward_subs, backward_subs; simplify=true, t0=missing)
sys = mtkcompile(sys)
t = iv
@brownian B

old_vars = first.(backward_subs)
new_vars = last.(forward_subs)

# use: f = Y(t, X)
# use: dY = (∂f/∂t + μ∂f/∂x + (1/2)*σ^2*∂2f/∂x2)dt + σ∂f/∂xdW
old_eqs = equations(sys)
old_noise = ModelingToolkit.get_noise_eqs(sys)

# Is there a function to find partial derivative?
∂f∂t = Symbolics.derivative( first.(forward_subs), t )
∂f∂t = [substitute(f_t, Differential(t)(old_var) => 0) for (f_t, old_var) in zip(∂f∂t, old_vars)]

∂f∂x = [Symbolics.derivative( first(f_sub), old_var ) for (f_sub, old_var) in zip(forward_subs, old_vars)]
∂2f∂x2 = Symbolics.derivative.( ∂f∂x, old_vars )
new_eqs = Equation[]

for (new_var, eq, noise, first, second, third) in zip(new_vars, old_eqs, old_noise, ∂f∂t, ∂f∂x, ∂2f∂x2)
ex = first + eq.rhs * second + 1/2 * noise^2 * third + noise*second*B
for eqs in old_eqs
ex = substitute(ex, eqs.lhs => eqs.rhs)
end
ex = substitute(ex, Dict(forward_subs))
ex = substitute(ex, Dict(backward_subs))
if simplify
ex = Symbolics.simplify(ex, expand=true)
end
push!(new_eqs, Differential(t)(new_var) ~ ex)
end

defs = get_defaults(sys)
new_defs = Dict()
for f_sub in forward_subs
ex = substitute(first(f_sub), defs)
if !ismissing(t0)
ex = substitute(ex, t => t0)
end
new_defs[last(f_sub)] = ex
end
for para in parameters(sys)
if haskey(defs, para)
new_defs[para] = defs[para]
end
end

@named new_sys = System(new_eqs, t;
defaults=new_defs,
observed=vcat(observed(sys),first.(backward_subs) .~ last.(backward_subs))
)
if simplify
return mtkcompile(new_sys)
end
return new_sys
end

"""
change_independent_variable(
sys::System, iv, eqs = [];
Expand Down
112 changes: 112 additions & 0 deletions test/changeofvariables.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,112 @@
using ModelingToolkit, OrdinaryDiffEq, StochasticDiffEq
using Test, LinearAlgebra


# Change of variables: z = log(x)
# (this implies that x = exp(z) is automatically non-negative)
@independent_variables t
@variables z(t)[1:2, 1:2]
D = Differential(t)
eqs = [D(D(z)) ~ ones(2, 2)]
@mtkcompile sys = System(eqs, t)
@test_nowarn ODEProblem(sys, [z => zeros(2, 2), D(z) => ones(2, 2)], (0.0, 10.0))

@parameters α
@variables x(t)
D = Differential(t)
eqs = [D(x) ~ α*x]

tspan = (0., 1.)
def = [x => 1.0, α => -0.5]

@mtkcompile sys = System(eqs, t;defaults=def)
prob = ODEProblem(sys, [], tspan)
sol = solve(prob, Tsit5())

@variables z(t)
forward_subs = [log(x) => z]
backward_subs = [x => exp(z)]
new_sys = changeofvariables(sys, t, forward_subs, backward_subs)
@test equations(new_sys)[1] == (D(z) ~ α)

new_prob = ODEProblem(new_sys, [], tspan)
new_sol = solve(new_prob, Tsit5())

@test isapprox(new_sol[x][end], sol[x][end], atol=1e-4)



# Riccati equation
@parameters α
@variables x(t)
D = Differential(t)
eqs = [D(x) ~ t^2 + α - x^2]
def = [x=>1., α => 1.]
@mtkcompile sys = System(eqs, t; defaults=def)

@variables z(t)
forward_subs = [t + α/(x+t) => z ]
backward_subs = [ x => α/(z-t) - t]

new_sys = changeofvariables(sys, t, forward_subs, backward_subs; simplify=true, t0=0.)
# output should be equivalent to
# t^2 + α - z^2 + 2 (but this simplification is not found automatically)

tspan = (0., 1.)
prob = ODEProblem(sys,[],tspan)
new_prob = ODEProblem(new_sys,[],tspan)

sol = solve(prob, Tsit5())
new_sol = solve(new_prob, Tsit5())

@test isapprox(sol[x][end], new_sol[x][end], rtol=1e-4)


# # Linear transformation to diagonal system
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

u' = Au
A = P^{-1}DP is the eigendecomposition (D is the diagonal matrix of eigenvalues and P is the matrix of eigenvectors)
z = Pu
u' = P^{-1}DPu
z' = Dz

# @variables x(t)[1:3]
# D = Differential(t)
# A = [0. -1. 0.; -0.5 0.5 0.; 0. 0. -1.]
# right = A.*transpose(x)
# eqs = [D(x[1]) ~ sum(right[1, 1:3]), D(x[2]) ~ sum(right[2, 1:3]), D(x[3]) ~ sum(right[3, 1:3])]

# tspan = (0., 10.)
# u0 = [x[1] => 1.0, x[2] => 2.0, x[3] => -1.0]

# @mtkcompile sys = System(eqs, t; defaults=u0)
# prob = ODEProblem(sys,[],tspan)
# sol = solve(prob, Tsit5())

# T = eigen(A).vectors

# @variables z(t)[1:3]
# forward_subs = T \ x .=> z
# backward_subs = x .=> T*z

# new_sys = changeofvariables(sys, t, forward_subs, backward_subs; simplify=true)

# new_prob = ODEProblem(new_sys, [], tspan)
# new_sol = solve(new_prob, Tsit5())

# # test RHS
# new_rhs = [eq.rhs for eq in equations(new_sys)]
# new_A = Symbolics.value.(Symbolics.jacobian(new_rhs, z))
# @test isapprox(diagm(eigen(A).values), new_A, rtol = 1e-10)
# @test isapprox( new_sol[x[1],end], sol[x[1],end], rtol=1e-4)

# Change of variables for sde
@independent_variables t
@brownian B
@parameters μ σ
@variables x(t) y(t)
D = Differential(t)
eqs = [D(x) ~ μ*x + σ*x*B]

def = [x=>0., μ => 2., σ=>1.]
@mtkcompile sys = System(eqs, t; defaults=def)
forward_subs = [log(x) => y]
backward_subs = [x => exp(y)]
new_sys = change_of_variable_SDE(sys, t, forward_subs, backward_subs)
@test equations(new_sys)[1] == (D(y) ~ μ - 1/2*σ^2)
@test ModelingToolkit.get_noise_eqs(new_sys)[1] === ModelingToolkit.value(σ)