-
-
Notifications
You must be signed in to change notification settings - Fork 226
Added a separate package BayesianNeuralPDE.jl #920
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
base: master
Are you sure you want to change the base?
Changes from 3 commits
41fd266
75ac7c0
763dccc
363b805
a731c7c
cbcc549
8f9f71b
5c1eb43
c4e61df
cc96f24
acad604
82eae31
c7c26f1
dffd822
57ee1aa
8b0a210
dcc3e03
1b0da56
74a6ec9
4b30b04
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,4 @@ | ||
| name = "BayesianNeuralPDE" | ||
| uuid = "3cea9122-e921-42ea-a9d7-c72fcb58ce53" | ||
| authors = ["paramthakkar123 <[email protected]>"] | ||
| version = "0.1.0" |
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,11 @@ | ||
| module BayesianNeuralPDE | ||
|
|
||
| include("advancedHMC_MCMC.jl") | ||
| include("BPINN_ode.jl") | ||
| include("PDE_BPINN.jl") | ||
| include("pinn_types.jl") | ||
|
|
||
| export BNNODE, ahmc_bayesian_pinn_ode, ahmc_bayesian_pinn_pde | ||
| export BPINNsolution, BayesianPINN | ||
|
|
||
| end |
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,240 @@ | ||
| """ | ||
| ahmc_bayesian_pinn_ode(prob, chain; strategy = GridTraining, dataset = [nothing], | ||
| init_params = nothing, draw_samples = 1000, physdt = 1 / 20.0f0, | ||
| l2std = [0.05], phystd = [0.05], phynewstd = [0.05], priorsNNw = (0.0, 2.0), | ||
| param = [], nchains = 1, autodiff = false, Kernel = HMC, | ||
| Adaptorkwargs = (Adaptor = StanHMCAdaptor, | ||
| Metric = DiagEuclideanMetric, targetacceptancerate = 0.8), | ||
| Integratorkwargs = (Integrator = Leapfrog,), | ||
| MCMCkwargs = (n_leapfrog = 30,), progress = false, | ||
| verbose = false) | ||
|
|
||
| !!! warn | ||
|
|
||
| Note that `ahmc_bayesian_pinn_ode()` only supports ODEs which are written in the | ||
| out-of-place form, i.e. `du = f(u,p,t)`, and not `f(du,u,p,t)`. If not declared | ||
| out-of-place, then `ahmc_bayesian_pinn_ode()` will exit with an error. | ||
|
|
||
| ## Example | ||
|
|
||
| ```julia | ||
| linear = (u, p, t) -> -u / p[1] + exp(t / p[2]) * cos(t) | ||
| tspan = (0.0, 10.0) | ||
| u0 = 0.0 | ||
| p = [5.0, -5.0] | ||
| prob = ODEProblem(linear, u0, tspan, p) | ||
|
|
||
| ### CREATE DATASET (Necessity for accurate Parameter estimation) | ||
| sol = solve(prob, Tsit5(); saveat = 0.05) | ||
| u = sol.u[1:100] | ||
| time = sol.t[1:100] | ||
|
|
||
| ### dataset and BPINN create | ||
| x̂ = collect(Float64, Array(u) + 0.05 * randn(size(u))) | ||
| dataset = [x̂, time] | ||
|
|
||
| chain1 = Lux.Chain(Lux.Dense(1, 5, tanh), Lux.Dense(5, 5, tanh), Lux.Dense(5, 1) | ||
|
|
||
| ### simply solving ode here hence better to not pass dataset(uses ode params specified in prob) | ||
| fh_mcmc_chain1, fhsamples1, fhstats1 = ahmc_bayesian_pinn_ode(prob, chain1, | ||
| dataset = dataset, | ||
| draw_samples = 1500, | ||
| l2std = [0.05], | ||
| phystd = [0.05], | ||
| priorsNNw = (0.0,3.0)) | ||
|
|
||
| ### solving ode + estimating parameters hence dataset needed to optimize parameters upon + Pior Distributions for ODE params | ||
| fh_mcmc_chain2, fhsamples2, fhstats2 = ahmc_bayesian_pinn_ode(prob, chain1, | ||
| dataset = dataset, | ||
| draw_samples = 1500, | ||
| l2std = [0.05], | ||
| phystd = [0.05], | ||
| priorsNNw = (0.0,3.0), | ||
| param = [Normal(6.5,0.5), Normal(-3,0.5)]) | ||
| ``` | ||
|
|
||
| ## NOTES | ||
|
|
||
| Dataset is required for accurate Parameter estimation + solving equations | ||
| Incase you are only solving the Equations for solution, do not provide dataset | ||
|
|
||
| ## Positional Arguments | ||
|
|
||
| * `prob`: DEProblem(out of place and the function signature should be f(u,p,t). | ||
| * `chain`: Lux Neural Netork which would be made the Bayesian PINN. | ||
|
|
||
| ## Keyword Arguments | ||
|
|
||
| * `strategy`: The training strategy used to choose the points for the evaluations. By | ||
| default GridTraining is used with given physdt discretization. | ||
| * `init_params`: initial parameter values for BPINN (ideally for multiple chains different | ||
| initializations preferred) | ||
| * `nchains`: number of chains you want to sample | ||
| * `draw_samples`: number of samples to be drawn in the MCMC algorithms (warmup samples are | ||
| ~2/3 of draw samples) | ||
| * `l2std`: standard deviation of BPINN prediction against L2 losses/Dataset | ||
| * `phystd`: standard deviation of BPINN prediction against Chosen Underlying ODE System | ||
| * `phynewstd`: standard deviation of new loss func term | ||
| * `priorsNNw`: Tuple of (mean, std) for BPINN Network parameters. Weights and Biases of | ||
| BPINN are Normal Distributions by default. | ||
| * `param`: Vector of chosen ODE parameters Distributions in case of Inverse problems. | ||
| * `autodiff`: Boolean Value for choice of Derivative Backend(default is numerical) | ||
| * `physdt`: Timestep for approximating ODE in it's Time domain. (1/20.0 by default) | ||
| * `Kernel`: Choice of MCMC Sampling Algorithm (AdvancedHMC.jl implementations HMC/NUTS/HMCDA) | ||
| * `Integratorkwargs`: `Integrator`, `jitter_rate`, `tempering_rate`. | ||
| Refer: https://turinglang.org/AdvancedHMC.jl/stable/ | ||
| * `Adaptorkwargs`: `Adaptor`, `Metric`, `targetacceptancerate`. | ||
| Refer: https://turinglang.org/AdvancedHMC.jl/stable/ Note: Target percentage (in decimal) | ||
| of iterations in which the proposals are accepted (0.8 by default) | ||
| * `MCMCargs`: A NamedTuple containing all the chosen MCMC kernel's (HMC/NUTS/HMCDA) | ||
| Arguments, as follows : | ||
| * `n_leapfrog`: number of leapfrog steps for HMC | ||
| * `δ`: target acceptance probability for NUTS and HMCDA | ||
| * `λ`: target trajectory length for HMCDA | ||
| * `max_depth`: Maximum doubling tree depth (NUTS) | ||
| * `Δ_max`: Maximum divergence during doubling tree (NUTS) | ||
| Refer: https://turinglang.org/AdvancedHMC.jl/stable/ | ||
| * `progress`: controls whether to show the progress meter or not. | ||
| * `verbose`: controls the verbosity. (Sample call args in AHMC) | ||
|
|
||
| !!! warning | ||
|
|
||
| AdvancedHMC.jl is still developing convenience structs so might need changes on new | ||
| releases. | ||
| """ | ||
| function ahmc_bayesian_pinn_ode( | ||
| prob::SciMLBase.ODEProblem, chain; strategy = GridTraining, dataset = [nothing], | ||
| init_params = nothing, draw_samples = 1000, physdt = 1 / 20.0, l2std = [0.05], | ||
| phystd = [0.05], phynewstd = [0.05], priorsNNw = (0.0, 2.0), param = [], nchains = 1, | ||
| autodiff = false, Kernel = HMC, | ||
| Adaptorkwargs = (Adaptor = StanHMCAdaptor, | ||
| Metric = DiagEuclideanMetric, targetacceptancerate = 0.8), | ||
| Integratorkwargs = (Integrator = Leapfrog,), MCMCkwargs = (n_leapfrog = 30,), | ||
| progress = false, verbose = false, estim_collocate = false) | ||
| @assert !isinplace(prob) "The BPINN ODE solver only supports out-of-place ODE definitions, i.e. du=f(u,p,t)." | ||
|
|
||
| chain isa AbstractLuxLayer || (chain = FromFluxAdaptor()(chain)) | ||
|
|
||
| strategy = strategy == GridTraining ? strategy(physdt) : strategy | ||
|
|
||
| if dataset != [nothing] && | ||
| (length(dataset) < 2 || !(dataset isa Vector{<:Vector{<:AbstractFloat}})) | ||
| error("Invalid dataset. dataset would be timeseries (x̂,t) where type: Vector{Vector{AbstractFloat}") | ||
| end | ||
|
|
||
| if dataset != [nothing] && param == [] | ||
| println("Dataset is only needed for Parameter Estimation + Forward Problem, not in only Forward Problem case.") | ||
| elseif dataset == [nothing] && param != [] | ||
| error("Dataset Required for Parameter Estimation.") | ||
| end | ||
|
|
||
| initial_nnθ, chain, st = generate_ltd(chain, init_params) | ||
|
|
||
| @assert nchains≤Threads.nthreads() "number of chains is greater than available threads" | ||
| @assert nchains≥1 "number of chains must be greater than 1" | ||
|
|
||
| # eltype(physdt) cause needs Float64 for find_good_stepsize | ||
| # Lux chain(using component array later as vector_to_parameter need namedtuple) | ||
| T = eltype(physdt) | ||
| initial_θ = getdata(ComponentArray{T}(initial_nnθ)) | ||
|
|
||
| # adding ode parameter estimation | ||
| nparameters = length(initial_θ) | ||
| ninv = length(param) | ||
| priors = [ | ||
| MvNormal(T(priorsNNw[1]) * ones(T, nparameters), | ||
| Diagonal(abs2.(T(priorsNNw[2]) .* ones(T, nparameters)))) | ||
| ] | ||
|
|
||
| # append Ode params to all paramvector | ||
| if ninv > 0 | ||
| # shift ode params(initialise ode params by prior means) | ||
| initial_θ = vcat(initial_θ, [Distributions.params(param[i])[1] for i in 1:ninv]) | ||
| priors = vcat(priors, param) | ||
| nparameters += ninv | ||
| end | ||
|
|
||
| smodel = StatefulLuxLayer{true}(chain, nothing, st) | ||
| # dimensions would be total no of params,initial_nnθ for Lux namedTuples | ||
| ℓπ = LogTargetDensity(nparameters, prob, smodel, strategy, dataset, priors, | ||
| phystd, phynewstd, l2std, autodiff, physdt, ninv, initial_nnθ, estim_collocate) | ||
|
|
||
| if verbose | ||
| @printf("Current Physics Log-likelihood: %g\n", physloglikelihood(ℓπ, initial_θ)) | ||
| @printf("Current Prior Log-likelihood: %g\n", priorweights(ℓπ, initial_θ)) | ||
| @printf("Current SSE against dataset Log-likelihood: %g\n", | ||
| L2LossData(ℓπ, initial_θ)) | ||
| if estim_collocate | ||
| @printf("Current gradient loss against dataset Log-likelihood: %g\n", | ||
| L2loss2(ℓπ, initial_θ)) | ||
| end | ||
| end | ||
|
|
||
| Adaptor = Adaptorkwargs[:Adaptor] | ||
| Metric = Adaptorkwargs[:Metric] | ||
| targetacceptancerate = Adaptorkwargs[:targetacceptancerate] | ||
|
|
||
| # Define Hamiltonian system (nparameters ~ dimensionality of the sampling space) | ||
| metric = Metric(nparameters) | ||
| hamiltonian = Hamiltonian(metric, ℓπ, ForwardDiff) | ||
|
|
||
| # parallel sampling option | ||
| if nchains != 1 | ||
| # Cache to store the chains | ||
| chains = Vector{Any}(undef, nchains) | ||
| statsc = Vector{Any}(undef, nchains) | ||
| samplesc = Vector{Any}(undef, nchains) | ||
|
|
||
| Threads.@threads for i in 1:nchains | ||
| # each chain has different initial NNparameter values(better posterior exploration) | ||
| initial_θ = vcat( | ||
| randn(eltype(initial_θ), nparameters - ninv), | ||
| initial_θ[(nparameters - ninv + 1):end] | ||
| ) | ||
| initial_ϵ = find_good_stepsize(hamiltonian, initial_θ) | ||
| integrator = integratorchoice(Integratorkwargs, initial_ϵ) | ||
| adaptor = adaptorchoice(Adaptor, MassMatrixAdaptor(metric), | ||
| StepSizeAdaptor(targetacceptancerate, integrator)) | ||
|
|
||
| MCMC_alg = kernelchoice(Kernel, MCMCkwargs) | ||
| Kernel = AdvancedHMC.make_kernel(MCMC_alg, integrator) | ||
| samples, stats = sample(hamiltonian, Kernel, initial_θ, draw_samples, adaptor; | ||
| progress = progress, verbose = verbose) | ||
|
|
||
| samplesc[i] = samples | ||
| statsc[i] = stats | ||
| mcmc_chain = Chains(reduce(hcat, samples)') | ||
| chains[i] = mcmc_chain | ||
| end | ||
|
|
||
| return chains, samplesc, statsc | ||
| else | ||
| initial_ϵ = find_good_stepsize(hamiltonian, initial_θ) | ||
| integrator = integratorchoice(Integratorkwargs, initial_ϵ) | ||
| adaptor = adaptorchoice(Adaptor, MassMatrixAdaptor(metric), | ||
| StepSizeAdaptor(targetacceptancerate, integrator)) | ||
|
|
||
| MCMC_alg = kernelchoice(Kernel, MCMCkwargs) | ||
| Kernel = AdvancedHMC.make_kernel(MCMC_alg, integrator) | ||
| samples, stats = sample(hamiltonian, Kernel, initial_θ, draw_samples, | ||
| adaptor; progress = progress, verbose = verbose) | ||
|
|
||
| if verbose | ||
| println("Sampling Complete.") | ||
| @printf("Final Physics Log-likelihood: %g\n", | ||
| physloglikelihood(ℓπ, samples[end])) | ||
| @printf("Final Prior Log-likelihood: %g\n", priorweights(ℓπ, samples[end])) | ||
| @printf("Final SSE against dataset Log-likelihood: %g\n", | ||
| L2LossData(ℓπ, samples[end])) | ||
| if estim_collocate | ||
| @printf("Final gradient loss against dataset Log-likelihood: %g\n", | ||
| L2loss2(ℓπ, samples[end])) | ||
| end | ||
| end | ||
|
|
||
| # return a chain(basic chain),samples and stats | ||
| matrix_samples = reshape(hcat(samples...), (length(samples[1]), length(samples), 1)) | ||
| mcmc_chain = MCMCChains.Chains(matrix_samples) | ||
| return mcmc_chain, samples, stats | ||
| end | ||
| end |
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,33 @@ | ||
| """ | ||
| BayesianPINN(args...; dataset = nothing, kwargs...) | ||
|
|
||
| A `discretize` algorithm for the ModelingToolkit PDESystem interface, which transforms a | ||
| `PDESystem` into a likelihood function used for HMC based Posterior Sampling Algorithms | ||
| [AdvancedHMC.jl](https://turinglang.org/AdvancedHMC.jl/stable/) which is later optimized | ||
| upon to give the Solution Distribution of the PDE, using the Physics-Informed Neural | ||
| Networks (PINN) methodology. | ||
|
|
||
| All positional arguments and keyword arguments are passed to `PhysicsInformedNN` except | ||
| the ones mentioned below. | ||
|
|
||
| ## Keyword Arguments | ||
|
|
||
| * `dataset`: A vector of matrix, each matrix for ith dependant variable and first col in | ||
| matrix is for dependant variables, remaining columns for independent variables. Needed for | ||
| inverse problem solving. | ||
| """ | ||
| @concrete struct BayesianPINN <: AbstractPINN | ||
| pinn <: PhysicsInformedNN | ||
| dataset | ||
| end | ||
|
|
||
| function Base.getproperty(pinn::BayesianPINN, name::Symbol) | ||
| name === :dataset && return getfield(pinn, :dataset) | ||
| name === :pinn && return getfield(pinn, :pinn) | ||
| return getproperty(pinn.pinn, name) | ||
| end | ||
|
|
||
| function BayesianPINN(args...; dataset = nothing, kwargs...) | ||
| dataset === nothing && (dataset = (nothing, nothing)) | ||
| return BayesianPINN(PhysicsInformedNN(args...; kwargs...), dataset) | ||
| end |
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,20 @@ | ||
| using ReTestItems, InteractiveUtils, Hwloc | ||
|
|
||
| @info sprint(versioninfo) | ||
|
|
||
| const GROUP = lowercase(get(ENV, "GROUP", "all")) | ||
|
|
||
| const RETESTITEMS_NWORKERS = parse( | ||
| Int, get(ENV, "RETESTITEMS_NWORKERS", string(min(Hwloc.num_physical_cores(), 4)))) | ||
| const RETESTITEMS_NWORKER_THREADS = parse(Int, | ||
| get(ENV, "RETESTITEMS_NWORKER_THREADS", | ||
| string(max(Hwloc.num_virtual_cores() ÷ RETESTITEMS_NWORKERS, 1)))) | ||
|
|
||
| using NeuralPDE | ||
|
|
||
| @info "Running tests with $(RETESTITEMS_NWORKERS) workers and \ | ||
| $(RETESTITEMS_NWORKER_THREADS) threads for group $(GROUP)" | ||
|
|
||
| ReTestItems.runtests(NeuralPDE; tags = (GROUP == "all" ? nothing : [Symbol(GROUP)]), | ||
|
||
| nworkers = RETESTITEMS_NWORKERS, | ||
| nworker_threads = RETESTITEMS_NWORKER_THREADS, testitem_timeout = 3600) | ||
Uh oh!
There was an error while loading. Please reload this page.