-
-
Notifications
You must be signed in to change notification settings - Fork 99
Improve the OptimizationManopt.jl interface #1009
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Changes from 2 commits
a074422
a064672
98b43be
dbddd25
0ac3af5
efc42ea
b488dc4
1b4864d
18c558a
ec2183b
561d9e2
213760e
0a47945
b980305
2e46ca1
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
| Original file line number | Diff line number | Diff line change |
|---|---|---|
|
|
@@ -65,20 +65,14 @@ function call_manopt_optimizer( | |
| loss, | ||
| gradF, | ||
| x0; | ||
| stopping_criterion::Union{Manopt.StoppingCriterion, Manopt.StoppingCriterionSet}, | ||
| evaluation::AbstractEvaluationType = Manopt.AllocatingEvaluation(), | ||
| stepsize::Stepsize = ArmijoLinesearch(M), | ||
| kwargs...) | ||
| opts = gradient_descent(M, | ||
| opts = Manopt.gradient_descent(M, | ||
| loss, | ||
| gradF, | ||
| x0; | ||
| return_state = true, | ||
| evaluation, | ||
| stepsize, | ||
| stopping_criterion, | ||
| kwargs...) | ||
| # we unwrap DebugOptions here | ||
| return_state = true, # return the (full, decorated) solver state | ||
| kwargs... | ||
| ) | ||
| minimizer = Manopt.get_solver_result(opts) | ||
| return (; minimizer = minimizer, minimum = loss(M, minimizer), options = opts) | ||
| end | ||
|
|
@@ -90,13 +84,8 @@ function call_manopt_optimizer(M::ManifoldsBase.AbstractManifold, opt::NelderMea | |
| loss, | ||
| gradF, | ||
| x0; | ||
| stopping_criterion::Union{Manopt.StoppingCriterion, Manopt.StoppingCriterionSet}, | ||
| kwargs...) | ||
| opts = NelderMead(M, | ||
| loss; | ||
| return_state = true, | ||
| stopping_criterion, | ||
| kwargs...) | ||
| opts = NelderMead(M, loss; return_state = true, kwargs...) | ||
| minimizer = Manopt.get_solver_result(opts) | ||
| return (; minimizer = minimizer, minimum = loss(M, minimizer), options = opts) | ||
| end | ||
|
|
@@ -109,19 +98,14 @@ function call_manopt_optimizer(M::ManifoldsBase.AbstractManifold, | |
| loss, | ||
| gradF, | ||
| x0; | ||
| stopping_criterion::Union{Manopt.StoppingCriterion, Manopt.StoppingCriterionSet}, | ||
| evaluation::AbstractEvaluationType = InplaceEvaluation(), | ||
| stepsize::Stepsize = ArmijoLinesearch(M), | ||
| kwargs...) | ||
| opts = conjugate_gradient_descent(M, | ||
| opts = Manopt.conjugate_gradient_descent(M, | ||
| loss, | ||
| gradF, | ||
| x0; | ||
| return_state = true, | ||
| evaluation, | ||
| stepsize, | ||
| stopping_criterion, | ||
| kwargs...) | ||
| kwargs... | ||
| ) | ||
| # we unwrap DebugOptions here | ||
| minimizer = Manopt.get_solver_result(opts) | ||
| return (; minimizer = minimizer, minimum = loss(M, minimizer), options = opts) | ||
|
|
@@ -135,25 +119,10 @@ function call_manopt_optimizer(M::ManifoldsBase.AbstractManifold, | |
| loss, | ||
| gradF, | ||
| x0; | ||
| stopping_criterion::Union{Manopt.StoppingCriterion, Manopt.StoppingCriterionSet}, | ||
| evaluation::AbstractEvaluationType = InplaceEvaluation(), | ||
| population_size::Int = 100, | ||
| retraction_method::AbstractRetractionMethod = default_retraction_method(M), | ||
| inverse_retraction_method::AbstractInverseRetractionMethod = default_inverse_retraction_method(M), | ||
| vector_transport_method::AbstractVectorTransportMethod = default_vector_transport_method(M), | ||
| kwargs...) | ||
| initial_population = vcat([x0], [rand(M) for _ in 1:(population_size - 1)]) | ||
| opts = particle_swarm(M, | ||
| loss; | ||
| x0 = initial_population, | ||
| n = population_size, | ||
| return_state = true, | ||
| retraction_method, | ||
| inverse_retraction_method, | ||
| vector_transport_method, | ||
| stopping_criterion, | ||
| kwargs...) | ||
| # we unwrap DebugOptions here | ||
| swarm = [x0, [rand(M) for _ in 1:(population_size - 1)]...] | ||
| opts = particle_swarm(M, loss, swarm; return_state = true, kwargs...) | ||
| minimizer = Manopt.get_solver_result(opts) | ||
| return (; minimizer = minimizer, minimum = loss(M, minimizer), options = opts) | ||
| end | ||
|
|
@@ -167,27 +136,9 @@ function call_manopt_optimizer(M::Manopt.AbstractManifold, | |
| loss, | ||
| gradF, | ||
| x0; | ||
| stopping_criterion::Union{Manopt.StoppingCriterion, Manopt.StoppingCriterionSet}, | ||
| evaluation::AbstractEvaluationType = InplaceEvaluation(), | ||
| retraction_method::AbstractRetractionMethod = default_retraction_method(M), | ||
| vector_transport_method::AbstractVectorTransportMethod = default_vector_transport_method(M), | ||
| stepsize = WolfePowellLinesearch(M; | ||
| retraction_method = retraction_method, | ||
| vector_transport_method = vector_transport_method, | ||
| linesearch_stopsize = 1e-12), | ||
| kwargs... | ||
| ) | ||
| opts = quasi_Newton(M, | ||
| loss, | ||
| gradF, | ||
| x0; | ||
| return_state = true, | ||
| evaluation, | ||
| retraction_method, | ||
| vector_transport_method, | ||
| stepsize, | ||
| stopping_criterion, | ||
| kwargs...) | ||
| opts = quasi_Newton(M, loss, gradF, x0; return_state = true, kwargs...) | ||
| # we unwrap DebugOptions here | ||
| minimizer = Manopt.get_solver_result(opts) | ||
| return (; minimizer = minimizer, minimum = loss(M, minimizer), options = opts) | ||
|
|
@@ -200,18 +151,8 @@ function call_manopt_optimizer(M::ManifoldsBase.AbstractManifold, | |
| loss, | ||
| gradF, | ||
| x0; | ||
| stopping_criterion::Union{Manopt.StoppingCriterion, Manopt.StoppingCriterionSet}, | ||
| evaluation::AbstractEvaluationType = InplaceEvaluation(), | ||
| retraction_method::AbstractRetractionMethod = default_retraction_method(M), | ||
| vector_transport_method::AbstractVectorTransportMethod = default_vector_transport_method(M), | ||
| basis = Manopt.DefaultOrthonormalBasis(), | ||
| kwargs...) | ||
| opt = cma_es(M, | ||
| loss, | ||
| x0; | ||
| return_state = true, | ||
| stopping_criterion, | ||
| kwargs...) | ||
| opt = cma_es(M, loss, x0; return_state = true, kwargs...) | ||
| # we unwrap DebugOptions here | ||
| minimizer = Manopt.get_solver_result(opt) | ||
| return (; minimizer = minimizer, minimum = loss(M, minimizer), options = opt) | ||
|
|
@@ -224,21 +165,8 @@ function call_manopt_optimizer(M::ManifoldsBase.AbstractManifold, | |
| loss, | ||
| gradF, | ||
| x0; | ||
| stopping_criterion::Union{Manopt.StoppingCriterion, Manopt.StoppingCriterionSet}, | ||
| evaluation::AbstractEvaluationType = InplaceEvaluation(), | ||
| retraction_method::AbstractRetractionMethod = default_retraction_method(M), | ||
| vector_transport_method::AbstractVectorTransportMethod = default_vector_transport_method(M), | ||
| kwargs...) | ||
| opt = convex_bundle_method!(M, | ||
| loss, | ||
| gradF, | ||
| x0; | ||
| return_state = true, | ||
| evaluation, | ||
| retraction_method, | ||
| vector_transport_method, | ||
| stopping_criterion, | ||
| kwargs...) | ||
| opt = convex_bundle_method(M, loss, gradF, x0; return_state = true, kwargs...) | ||
| # we unwrap DebugOptions here | ||
| minimizer = Manopt.get_solver_result(opt) | ||
| return (; minimizer = minimizer, minimum = loss(M, minimizer), options = opt) | ||
|
|
@@ -252,21 +180,13 @@ function call_manopt_optimizer(M::ManifoldsBase.AbstractManifold, | |
| gradF, | ||
| x0; | ||
| hessF = nothing, | ||
| stopping_criterion::Union{Manopt.StoppingCriterion, Manopt.StoppingCriterionSet}, | ||
| evaluation::AbstractEvaluationType = InplaceEvaluation(), | ||
| retraction_method::AbstractRetractionMethod = default_retraction_method(M), | ||
| kwargs...) | ||
| opt = adaptive_regularization_with_cubics(M, | ||
| loss, | ||
| gradF, | ||
| hessF, | ||
| x0; | ||
| return_state = true, | ||
| evaluation, | ||
| retraction_method, | ||
| stopping_criterion, | ||
| kwargs...) | ||
| # we unwrap DebugOptions here | ||
|
|
||
| opt = if isnothing(hessF) | ||
| adaptive_regularization_with_cubics(M, loss, gradF, x0; return_state = true, kwargs...) | ||
| else | ||
| adaptive_regularization_with_cubics(M, loss, gradF, hessF, x0; return_state = true, kwargs...) | ||
| end | ||
| minimizer = Manopt.get_solver_result(opt) | ||
| return (; minimizer = minimizer, minimum = loss(M, minimizer), options = opt) | ||
| end | ||
|
|
@@ -279,20 +199,12 @@ function call_manopt_optimizer(M::ManifoldsBase.AbstractManifold, | |
| gradF, | ||
| x0; | ||
| hessF = nothing, | ||
| stopping_criterion::Union{Manopt.StoppingCriterion, Manopt.StoppingCriterionSet}, | ||
| evaluation::AbstractEvaluationType = InplaceEvaluation(), | ||
| retraction_method::AbstractRetractionMethod = default_retraction_method(M), | ||
| kwargs...) | ||
| opt = trust_regions(M, | ||
| loss, | ||
| gradF, | ||
| hessF, | ||
| x0; | ||
| return_state = true, | ||
| evaluation, | ||
| retraction = retraction_method, | ||
| stopping_criterion, | ||
| kwargs...) | ||
| opt = if isnothing(hessF) | ||
| trust_regions(M, loss, gradF, x0; return_state = true, kwargs...) | ||
| else | ||
| trust_regions(M, loss, gradF, hessF, x0; return_state = true, kwargs...) | ||
| end | ||
| # we unwrap DebugOptions here | ||
| minimizer = Manopt.get_solver_result(opt) | ||
| return (; minimizer = minimizer, minimum = loss(M, minimizer), options = opt) | ||
|
|
@@ -305,21 +217,8 @@ function call_manopt_optimizer(M::ManifoldsBase.AbstractManifold, | |
| loss, | ||
| gradF, | ||
| x0; | ||
| stopping_criterion::Union{Manopt.StoppingCriterion, Manopt.StoppingCriterionSet}, | ||
| evaluation::AbstractEvaluationType = InplaceEvaluation(), | ||
| retraction_method::AbstractRetractionMethod = default_retraction_method(M), | ||
| stepsize::Stepsize = DecreasingStepsize(; length = 2.0, shift = 2), | ||
| kwargs...) | ||
| opt = Frank_Wolfe_method(M, | ||
| loss, | ||
| gradF, | ||
| x0; | ||
| return_state = true, | ||
| evaluation, | ||
| retraction_method, | ||
| stopping_criterion, | ||
| stepsize, | ||
| kwargs...) | ||
| opt = Frank_Wolfe_method(M, loss, gradF, x0; return_state = true, kwargs...) | ||
| # we unwrap DebugOptions here | ||
| minimizer = Manopt.get_solver_result(opt) | ||
| return (; minimizer = minimizer, minimum = loss(M, minimizer), options = opt) | ||
|
|
@@ -332,20 +231,22 @@ function SciMLBase.requiresgradient(opt::Union{ | |
| AdaptiveRegularizationCubicOptimizer, TrustRegionsOptimizer}) | ||
| true | ||
| end | ||
| # TODO: WHY? they both still accept not passing it | ||
| function SciMLBase.requireshessian(opt::Union{ | ||
| AdaptiveRegularizationCubicOptimizer, TrustRegionsOptimizer}) | ||
| true | ||
| end | ||
|
|
||
|
||
| function build_loss(f::OptimizationFunction, prob, cb) | ||
| function (::AbstractManifold, θ) | ||
| return function (::AbstractManifold, θ) | ||
| x = f.f(θ, prob.p) | ||
| cb(x, θ) | ||
| __x = first(x) | ||
| return prob.sense === Optimization.MaxSense ? -__x : __x | ||
| end | ||
| end | ||
|
|
||
| #TODO: What does the “true” mean here? | ||
| function build_gradF(f::OptimizationFunction{true}) | ||
| function g(M::AbstractManifold, G, θ) | ||
| f.grad(G, θ) | ||
|
|
@@ -356,6 +257,7 @@ function build_gradF(f::OptimizationFunction{true}) | |
| f.grad(G, θ) | ||
| return riemannian_gradient(M, θ, G) | ||
| end | ||
| return g | ||
| end | ||
kellertuer marked this conversation as resolved.
Show resolved
Hide resolved
|
||
|
|
||
| function build_hessF(f::OptimizationFunction{true}) | ||
kellertuer marked this conversation as resolved.
Show resolved
Hide resolved
|
||
|
|
@@ -373,6 +275,7 @@ function build_hessF(f::OptimizationFunction{true}) | |
| f.grad(G, θ) | ||
| return riemannian_Hessian(M, θ, G, H, X) | ||
| end | ||
| return h | ||
| end | ||
|
|
||
| function SciMLBase.__solve(cache::OptimizationCache{ | ||
|
|
@@ -395,8 +298,7 @@ function SciMLBase.__solve(cache::OptimizationCache{ | |
| LC, | ||
| UC, | ||
| S, | ||
| O <: | ||
| AbstractManoptOptimizer, | ||
| O <: AbstractManoptOptimizer, | ||
| D, | ||
| P, | ||
| C | ||
|
|
@@ -418,6 +320,7 @@ function SciMLBase.__solve(cache::OptimizationCache{ | |
| u = θ, | ||
| p = cache.p, | ||
| objective = x[1]) | ||
| #TODO: What is this callback for? | ||
ChrisRackauckas marked this conversation as resolved.
Outdated
Show resolved
Hide resolved
|
||
| cb_call = cache.callback(opt_state, x...) | ||
kellertuer marked this conversation as resolved.
Outdated
Show resolved
Hide resolved
|
||
| if !(cb_call isa Bool) | ||
| error("The callback should return a boolean `halt` for whether to stop the optimization process.") | ||
|
|
@@ -448,10 +351,12 @@ function SciMLBase.__solve(cache::OptimizationCache{ | |
| stopping_criterion = Manopt.StopAfterIteration(500) | ||
| end | ||
|
|
||
| # TODO: With the new keyword warnings we can not just always pass down hessF! | ||
| opt_res = call_manopt_optimizer(manifold, cache.opt, _loss, gradF, cache.u0; | ||
| solver_kwarg..., stopping_criterion = stopping_criterion, hessF) | ||
kellertuer marked this conversation as resolved.
Outdated
Show resolved
Hide resolved
|
||
|
|
||
| asc = get_stopping_criterion(opt_res.options) | ||
| # TODO: Switch to `has_converged` once that was released. | ||
| opt_ret = Manopt.indicates_convergence(asc) ? ReturnCode.Success : ReturnCode.Failure | ||
|
|
||
| return SciMLBase.build_solution(cache, | ||
|
|
||
Uh oh!
There was an error while loading. Please reload this page.