Skip to content
This repository was archived by the owner on Aug 25, 2025. It is now read-only.
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
26 changes: 13 additions & 13 deletions ext/OptimizationZygoteExt.jl
Original file line number Diff line number Diff line change
Expand Up @@ -30,7 +30,7 @@ function OptimizationBase.instantiate_function(
adtype, soadtype = OptimizationBase.generate_adtype(adtype)

if g == true && f.grad === nothing
prep_grad = prepare_gradient(f.f, adtype, x, Constant(p))
prep_grad = prepare_gradient(f.f, adtype, x, Constant(p), strict=Val(false))
function grad(res, θ)
gradient!(f.f, res, prep_grad, adtype, θ, Constant(p))
end
Expand All @@ -47,7 +47,7 @@ function OptimizationBase.instantiate_function(

if fg == true && f.fg === nothing
if g == false
prep_grad = prepare_gradient(f.f, adtype, x, Constant(p))
prep_grad = prepare_gradient(f.f, adtype, x, Constant(p), strict=Val(false))
end
function fg!(res, θ)
(y, _) = value_and_gradient!(f.f, res, prep_grad, adtype, θ, Constant(p))
Expand All @@ -68,7 +68,7 @@ function OptimizationBase.instantiate_function(
hess_sparsity = f.hess_prototype
hess_colors = f.hess_colorvec
if h == true && f.hess === nothing
prep_hess = prepare_hessian(f.f, soadtype, x, Constant(p))
prep_hess = prepare_hessian(f.f, soadtype, x, Constant(p), strict=Val(false))
function hess(res, θ)
hessian!(f.f, res, prep_hess, soadtype, θ, Constant(p))
end
Expand Down Expand Up @@ -143,7 +143,7 @@ function OptimizationBase.instantiate_function(
cons_jac_prototype = f.cons_jac_prototype
cons_jac_colorvec = f.cons_jac_colorvec
if cons !== nothing && cons_j == true && f.cons_j === nothing
prep_jac = prepare_jacobian(cons_oop, adtype, x)
prep_jac = prepare_jacobian(cons_oop, adtype, x, strict=Val(false))
function cons_j!(J, θ)
jacobian!(cons_oop, J, prep_jac, adtype, θ)
if size(J, 1) == 1
Expand All @@ -157,7 +157,7 @@ function OptimizationBase.instantiate_function(
end

if f.cons_vjp === nothing && cons_vjp == true && cons !== nothing
prep_pullback = prepare_pullback(cons_oop, adtype, x, (ones(eltype(x), num_cons),))
prep_pullback = prepare_pullback(cons_oop, adtype, x, (ones(eltype(x), num_cons),), strict=Val(false))
function cons_vjp!(J, θ, v)
pullback!(cons_oop, (J,), prep_pullback, adtype, θ, (v,))
end
Expand All @@ -169,7 +169,7 @@ function OptimizationBase.instantiate_function(

if cons !== nothing && f.cons_jvp === nothing && cons_jvp == true
prep_pushforward = prepare_pushforward(
cons_oop, adtype, x, (ones(eltype(x), length(x)),))
cons_oop, adtype, x, (ones(eltype(x), length(x)),), strict=Val(false))
function cons_jvp!(J, θ, v)
pushforward!(cons_oop, (J,), prep_pushforward, adtype, θ, (v,))
end
Expand All @@ -182,7 +182,7 @@ function OptimizationBase.instantiate_function(
conshess_sparsity = f.cons_hess_prototype
conshess_colors = f.cons_hess_colorvec
if cons !== nothing && cons_h == true && f.cons_h === nothing
prep_cons_hess = [prepare_hessian(cons_oop, soadtype, x, Constant(i))
prep_cons_hess = [prepare_hessian(cons_oop, soadtype, x, Constant(i), strict=Val(false))
for i in 1:num_cons]

function cons_h!(H, θ)
Expand All @@ -201,7 +201,7 @@ function OptimizationBase.instantiate_function(
if f.lag_h === nothing && cons !== nothing && lag_h == true
lag_extras = prepare_hessian(
lagrangian, soadtype, x, Constant(one(eltype(x))),
Constant(ones(eltype(x), num_cons)), Constant(p))
Constant(ones(eltype(x), num_cons)), Constant(p), strict=Val(false))
lag_hess_prototype = zeros(Bool, num_cons, length(x))

function lag_h!(H::AbstractMatrix, θ, σ, λ)
Expand Down Expand Up @@ -294,7 +294,7 @@ function OptimizationBase.instantiate_function(
adtype, soadtype = OptimizationBase.generate_sparse_adtype(adtype)

if g == true && f.grad === nothing
extras_grad = prepare_gradient(f.f, adtype.dense_ad, x, Constant(p))
extras_grad = prepare_gradient(f.f, adtype.dense_ad, x, Constant(p), strict=Val(false))
function grad(res, θ)
gradient!(f.f, res, extras_grad, adtype.dense_ad, θ, Constant(p))
end
Expand All @@ -311,7 +311,7 @@ function OptimizationBase.instantiate_function(

if fg == true && f.fg === nothing
if g == false
extras_grad = prepare_gradient(f.f, adtype.dense_ad, x, Constant(p))
extras_grad = prepare_gradient(f.f, adtype.dense_ad, x, Constant(p), strict=Val(false))
end
function fg!(res, θ)
(y, _) = value_and_gradient!(
Expand All @@ -334,7 +334,7 @@ function OptimizationBase.instantiate_function(
hess_sparsity = f.hess_prototype
hess_colors = f.hess_colorvec
if h == true && f.hess === nothing
prep_hess = prepare_hessian(f.f, soadtype, x, Constant(p))
prep_hess = prepare_hessian(f.f, soadtype, x, Constant(p), strict=Val(false))
function hess(res, θ)
hessian!(f.f, res, prep_hess, soadtype, θ, Constant(p))
end
Expand Down Expand Up @@ -458,7 +458,7 @@ function OptimizationBase.instantiate_function(
conshess_sparsity = f.cons_hess_prototype
conshess_colors = f.cons_hess_colorvec
if cons !== nothing && f.cons_h === nothing && cons_h == true
prep_cons_hess = [prepare_hessian(cons_oop, soadtype, x, Constant(i))
prep_cons_hess = [prepare_hessian(cons_oop, soadtype, x, Constant(i), strict=Val(false))
for i in 1:num_cons]
colores = getfield.(prep_cons_hess, :coloring_result)
conshess_sparsity = getfield.(colores, :A)
Expand All @@ -479,7 +479,7 @@ function OptimizationBase.instantiate_function(
if cons !== nothing && f.lag_h === nothing && lag_h == true
lag_extras = prepare_hessian(
lagrangian, soadtype, x, Constant(one(eltype(x))),
Constant(ones(eltype(x), num_cons)), Constant(p))
Constant(ones(eltype(x), num_cons)), Constant(p), strict=Val(false))
lag_hess_prototype = lag_extras.coloring_result.A
lag_hess_colors = lag_extras.coloring_result.color

Expand Down
Loading