Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion examples/ode_estimation/Lotka_Volterra/lotka_volterra.jl
Original file line number Diff line number Diff line change
Expand Up @@ -31,7 +31,7 @@ n_particles = 10_000

gbest, particles = PSOGPU.init_particles(optprob, n_particles)

gpu_data = cu([@SArray ones(length(prob.u0))])
gpu_data = [@SArray ones(length(prob.u0))]

gpu_particles = cu(particles)

Expand Down
46 changes: 28 additions & 18 deletions src/ode_pso.jl
Original file line number Diff line number Diff line change
Expand Up @@ -48,30 +48,47 @@ function default_prob_func(prob, gpu_particle)
return remake(prob, p = gpu_particle.position)
end

function parameter_estim_ode!(prob::ODEProblem,
function build_ode_objective(prob::ODEProblem, alg = GPUTsit5(), data = nothing, population = 100, kwargs...)

if isnothing(data)
throw(ArgumentError("data must be provided for parameter estimation"))
end

improb = make_prob_compatible(prob)

function obj(losses, gpu_particles, prob = prob, alg = alg, data = data, kwargs...)
probs = default_prob_func.(Ref(improb), gpu_particles)

ts, us = vectorized_asolve(probs,
prob,
alg; kwargs...)

sum!(losses, (map(x -> sum(x .^ 2), data .- us)))
end

return OptimizationProblem(OptimizationFunction(obj), ones(Float32, population))
end


function parameter_estim_ode!(
prob::OptimizationProblem,
gpu_particles,
gbest,
data,
lb,
ub;
ode_alg = GPUTsit5(),
prob_func = default_prob_func,
w = 0.72980f0,
wdamp = 1.0f0,
maxiters = 100, kwargs...)
update_states! = @cuda launch=false PSOGPU._update_particle_states!(gpu_particles, lb,
ub,
gbest,
w)

update_states! = @cuda launch=false PSOGPU._update_particle_states!(prob, gpu_particles, gbest, w)

losses = CUDA.ones(1, length(gpu_particles))

update_costs! = @cuda launch=false PSOGPU._update_particle_costs!(losses, gpu_particles)

config_states = launch_configuration(update_states!.fun)
config_costs = launch_configuration(update_costs!.fun)

improb = make_prob_compatible(prob)

for i in 1:maxiters
update_states!(gpu_particles,
lb,
Expand All @@ -81,14 +98,7 @@ function parameter_estim_ode!(prob::ODEProblem,
config_states.threads,
config_states...)

probs = prob_func.(Ref(improb), gpu_particles)

ts, us = vectorized_asolve(probs,
prob,
ode_alg; kwargs...)

sum!(losses, (map(x -> sum(x .^ 2), data .- us)))


update_costs!(losses, gpu_particles; config_costs.threads, config_costs...)

best_particle = minimum(gpu_particles,
Expand Down
88 changes: 88 additions & 0 deletions test/neuralode.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,88 @@
using SimpleChains, StaticArrays, OrdinaryDiffEq, SciMLSensitivity
u0 = @SArray Float32[2.0, 0.0]
datasize = 30
tspan = (0.0f0, 1.5f0)
tsteps = range(tspan[1], tspan[2], length = datasize)

function trueODE(u, p, t)
true_A = @SMatrix Float32[-0.1 2.0; -2.0 -0.1]
((u .^ 3)'true_A)'
end

prob = ODEProblem(trueODE, u0, tspan)
data = Array(solve(prob, Tsit5(), saveat = tsteps))

sc = SimpleChain(static(2),
Activation(x -> x .* 3),
TurboDense{true}(tanh, static(2)),
TurboDense{true}(identity, static(2)))

p_nn = SimpleChains.init_params(sc)

function nn_fn(u::T, p, t)::T where {T}
nn, ps = p
return nn(u, ps, t)
end

nn = (u, p, t) -> sc(u, p)

p_static = SArray{Tuple{size(p_nn)...}}(p_nn...)

prob_nn = ODEProblem(nn_fn, u0, tspan, (sc, p_static))


function predict_neuralode(p)
_prob = remake(_prob; p = (sc, p))
Array(solve(_monteprob, GPUTsit5(), EnsembleGPUKernel(CUDABackend(), 0.0), dt = 0.1f0,
trajectories = 2, adaptive = true, saveat = tsteps)[1])
end

function loss_neuralode(p)
pred = predict_neuralode(p)
loss = sum(abs2, data .- pred)
return loss
end

sol = predict_neuralode(p_static)
t = collect(range(0f0, stop = 10.0, length = 200))
using RecursiveArrayTools # for VectorOfArray
randomized = VectorOfArray([(sol(t[i]) + 0.01randn(2)) for i in 1:length(t)])

data = convert(Array, randomized)

n_particles = 1000

maxiters = 1000

n = 1

lb = @SArray ones(n)

lb = -10*lb

ub = @SArray ones(n)

ub = 10*ub


optprob = OptimizationProblem(loss_neuralode, [1.0], (prob,t);lb, ub)

using PSOGPU
using CUDA


gbest, particles = PSOGPU.init_particles(optprob, n_particles)

gpu_data = cu([SVector{length(prob.u0), eltype(prob.u0)}(@view data[:,i]) for i in 1:length(t)])


gpu_particles = cu(particles)


@time gsol = PSOGPU.parameter_estim_ode!(prob,
gpu_particles,
gbest,
gpu_data,
lb,
ub; saveat = t, dt = 0.1)