@@ -251,7 +251,10 @@ function minimal_init(rng::AbstractRNG, ::Type{T}, dims::Integer...;
251251 rng,
252252 T)
253253 else
254- error (" Sampling type not allowed. Please use one of :bernoulli or :irrational" )
254+ error (""" \n
255+ Sampling type not allowed.
256+ Please use one of :bernoulli or :irrational\n
257+ """ )
255258 end
256259 return layer_matrix
257260end
@@ -580,6 +583,7 @@ and scaled spectral radius according to `radius`.
580583 - `T`: Type of the elements in the reservoir matrix.
581584 Default is `Float32`.
582585 - `dims`: Dimensions of the reservoir matrix.
586+
583587# Keyword arguments
584588
585589 - `radius`: The desired spectral radius of the reservoir.
@@ -609,7 +613,10 @@ function rand_sparse(rng::AbstractRNG, ::Type{T}, dims::Integer...;
609613 rho_w = maximum (abs .(eigvals (reservoir_matrix)))
610614 reservoir_matrix .*= radius / rho_w
611615 if Inf in unique (reservoir_matrix) || - Inf in unique (reservoir_matrix)
612- error (" Sparsity too low for size of the matrix. Increase res_size or increase sparsity" )
616+ error (""" \n
617+ Sparsity too low for size of the matrix.
618+ Increase res_size or increase sparsity.\n
619+ """ )
613620 end
614621
615622 return return_sparse ? sparse (reservoir_matrix) : reservoir_matrix
@@ -662,8 +669,10 @@ julia> res_matrix = delay_line(5, 5; weight=1)
662669function delay_line (rng:: AbstractRNG , :: Type{T} , dims:: Integer... ;
663670 weight= T (0.1 ), return_sparse:: Bool = true ) where {T <: Number }
664671 reservoir_matrix = DeviceAgnostic. zeros (rng, T, dims... )
665- @assert length (dims) == 2 && dims[1 ] == dims[2 ] " The dimensions
666- must define a square matrix (e.g., (100, 100))"
672+ @assert length (dims) == 2 && dims[1 ] == dims[2 ] """ \n
673+ The dimensions must define a square matrix
674+ (e.g., (100, 100))
675+ """
667676
668677 for i in 1 : (dims[1 ] - 1 )
669678 reservoir_matrix[i + 1 , i] = weight
@@ -687,7 +696,7 @@ Creates a matrix with backward connections as described in [^Rodan2010].
687696 Default is `Float32`.
688697 - `dims`: Dimensions of the reservoir matrix.
689698
690- # Keyword arguments
699+ # Keyword arguments
691700
692701 - `weight`: The weight determines the absolute value of
693702 forward connections in the reservoir. Default is 0.1
@@ -818,7 +827,7 @@ Create a simple cycle reservoir with the specified dimensions and weight.
818827 - `T`: Type of the elements in the reservoir matrix. Default is `Float32`.
819828 - `dims`: Dimensions of the reservoir matrix.
820829
821- # Keyword arguments
830+ # Keyword arguments
822831
823832 - `weight`: Weight of the connections in the reservoir matrix.
824833 Default is 0.1.
@@ -876,7 +885,7 @@ Returns an initializer to build a sparse reservoir matrix with the given
876885 Default is `Float32`.
877886 - `dims`: Dimensions of the reservoir matrix.
878887
879- # Keyword arguments
888+ # Keyword arguments
880889
881890 - `max_value`: The maximum absolute value of elements in the matrix.
882891 Default is 1.0
0 commit comments