Skip to content

ScrapeGraphAI/toonify

Repository files navigation

Toonify Logo

TOON (Token-Oriented Object Notation)

English | 中文 | 한국어

A compact, human-readable serialization format designed for passing structured data to Large Language Models with significantly reduced token usage.

Python Version License: MIT

Overview

TOON achieves CSV-like compactness while adding explicit structure, making it ideal for:

  • Reducing token costs in LLM API calls
  • Improving context window efficiency
  • Maintaining human readability
  • Preserving data structure and types

Key Features

  • Compact: 64% smaller than JSON on average (tested on 50 datasets)
  • Readable: Clean, indentation-based syntax
  • Structured: Preserves nested objects and arrays
  • Type-safe: Supports strings, numbers, booleans, null
  • Flexible: Multiple delimiter options (comma, tab, pipe)
  • Smart: Automatic tabular format for uniform arrays
  • Efficient: Key folding for deeply nested objects

Installation

pip install toonify

For development:

pip install toonify[dev]

With Pydantic support:

pip install toonify[pydantic]

Quick Start

Python API

from toon import encode, decode

# Encode Python dict to TOON
data = {
    'products': [
        {'sku': 'LAP-001', 'name': 'Gaming Laptop', 'price': 1299.99},
        {'sku': 'MOU-042', 'name': 'Wireless Mouse', 'price': 29.99}
    ]
}

toon_string = encode(data)
print(toon_string)
# Output:
# products[2]{sku,name,price}:
#   LAP-001,Gaming Laptop,1299.99
#   MOU-042,Wireless Mouse,29.99

# Decode TOON back to Python
result = decode(toon_string)
assert result == data

Command Line

# Encode JSON to TOON
toon input.json -o output.toon

# Decode TOON to JSON
toon input.toon -o output.json

# Use with pipes
cat data.json | toon -e > data.toon

# Show token statistics
toon data.json --stats

Pydantic Integration

TOON supports direct conversion from Pydantic models:

from pydantic import BaseModel
from toon import encode_pydantic, decode_to_pydantic

# Define Pydantic models
class User(BaseModel):
    id: int
    name: str
    email: str

# Encode Pydantic models to TOON
users = [
    User(id=1, name='Alice', email='[email protected]'),
    User(id=2, name='Bob', email='[email protected]')
]

toon = encode_pydantic(users)
print(toon)
# Output:
# [2]{id,name,email}:
#   1,Alice,[email protected]
#   2,Bob,[email protected]

# Decode TOON back to Pydantic models
decoded_users = decode_to_pydantic(toon, User)
assert all(isinstance(u, User) for u in decoded_users)

Features:

  • ✅ Direct conversion from Pydantic models (v1 and v2)
  • ✅ Support for nested models
  • ✅ Exclude unset, None, or default values
  • ✅ Field aliases support
  • ✅ Full validation on decode
  • ✅ Round-trip conversion

See examples/pydantic_usage.py for more examples.

Response Structure Templates for LLM Prompts

TOON provides a powerful feature to generate response structure templates that can be included in LLM prompts. This tells the model exactly what format to return data in, without needing to provide examples with actual data.

from toon import generate_structure

# Define the expected response structure
schema = {
    "name": "name of the person",
    "age": "age of the person",
    "occupation": "job description of the person"
}

# Generate the structure template
structure = generate_structure(schema)
print(structure)
# Output:
# name: <name of the person>
# age: <age of the person>
# occupation: <job description of the person>

# Use in your LLM prompt
prompt = f"""Extract person information from the text and return it in this format:
{structure}

Text: [your text here...]"""

For arrays and complex structures:

schema = {
    "products": [{
        "name": "product name",
        "price": "price in USD",
        "rating": "rating from 1-5"
    }]
}

structure = generate_structure(schema)
print(structure)
# Output:
# products[N]{name,price,rating}:
#   <product name>,<price in USD>,<rating from 1-5>
#   ...

With Pydantic models:

from pydantic import BaseModel, Field
from toon import generate_structure_from_pydantic

class Product(BaseModel):
    name: str = Field(description="product name")
    price: float = Field(description="price in USD")
    in_stock: bool = Field(description="availability status")

# Generate structure from model
structure = generate_structure_from_pydantic(Product)
# Use in LLM prompts without providing examples

Benefits:

  • ✅ No need to include example data in prompts (saves tokens)
  • ✅ Clear, unambiguous format specification
  • ✅ Works with nested objects and arrays
  • ✅ Supports custom delimiters
  • ✅ Type-safe with Pydantic models

See examples/structure_template_usage.py for comprehensive examples.

TOON Format Specification

Basic Syntax

# Simple key-value pairs
title: Machine Learning Basics
chapters: 12
published: true

Arrays

Primitive arrays (inline):

temperatures: [72.5,68.3,75.1,70.8,73.2]
categories: [electronics,computers,accessories]

Tabular arrays (uniform objects with header):

inventory[3]{sku,product,stock}:
  KB-789,Mechanical Keyboard,45
  MS-456,RGB Mouse Pad,128
  HD-234,USB Headset,67

List arrays (non-uniform or nested):

tasks[2]:
  Complete documentation
  Review pull requests

Nested Objects

server:
  hostname: api-prod-01
  config:
    port: 8080
    region: us-east

Quoting Rules

Strings are quoted only when necessary:

  • Contains special characters (,, :, ", newlines)
  • Has leading/trailing whitespace
  • Looks like a literal (true, false, null)
  • Is empty
simple: ProductName
quoted: "Product, Description"
escaped: "Size: 15\" display"
multiline: "First feature\nSecond feature"

API Reference

encode(data, options=None)

Convert Python object to TOON string.

Parameters:

  • data: Python dict or list
  • options: Optional dict with:
    • delimiter: 'comma' (default), 'tab', or 'pipe'
    • indent: Number of spaces per level (default: 2)
    • key_folding: 'off' (default) or 'safe'
    • flatten_depth: Max depth for key folding (default: None)

Example:

toon = encode(data, {
    'delimiter': 'tab',
    'indent': 4,
    'key_folding': 'safe'
})

decode(toon_string, options=None)

Convert TOON string to Python object.

Parameters:

  • toon_string: TOON formatted string
  • options: Optional dict with:
    • strict: Validate structure strictly (default: True)
    • expand_paths: 'off' (default) or 'safe'
    • default_delimiter: Default delimiter (default: ',')

Example:

data = decode(toon_string, {
    'expand_paths': 'safe',
    'strict': False
})

encode_pydantic(model, options=None, exclude_unset=False, exclude_none=False, exclude_defaults=False, by_alias=False)

Convert Pydantic model(s) to TOON string.

Parameters:

  • model: Pydantic model instance or list of model instances
  • options: Same as encode() function
  • exclude_unset: If True, exclude fields that were not explicitly set
  • exclude_none: If True, exclude fields with None values
  • exclude_defaults: If True, exclude fields with default values
  • by_alias: If True, use field aliases instead of field names

Example:

from pydantic import BaseModel
from toon import encode_pydantic

class User(BaseModel):
    id: int
    name: str
    email: str | None = None

user = User(id=1, name='Alice')
toon = encode_pydantic(user, exclude_none=True)

decode_to_pydantic(toon_string, model_class, options=None)

Decode TOON string to Pydantic model(s).

Parameters:

  • toon_string: TOON formatted string
  • model_class: Pydantic model class to instantiate
  • options: Same as decode() function

Returns:

  • Pydantic model instance or list of instances (depending on input)

Example:

from pydantic import BaseModel
from toon import decode_to_pydantic

class User(BaseModel):
    id: int
    name: str

toon = "id: 1\nname: Alice"
user = decode_to_pydantic(toon, User)

generate_structure(schema, options=None)

Generate a TOON structure template from a schema definition for use in LLM prompts.

Parameters:

  • schema: Schema definition as dict or list
    • Simple fields: {"field_name": "description"}
    • Nested objects: {"field": {"nested": "description"}}
    • Arrays: {"field": [{"item_field": "description"}]}
  • options: Optional dict with:
    • delimiter: 'comma' (default), 'tab', or 'pipe'
    • indent: Number of spaces per level (default: 2)

Returns:

  • TOON formatted structure template string

Example:

from toon import generate_structure

schema = {
    "name": "name of the person",
    "age": "age of the person",
    "occupation": "job description"
}

structure = generate_structure(schema)
print(structure)
# Output:
# name: <name of the person>
# age: <age of the person>
# occupation: <job description>

# Use in LLM prompt:
prompt = f"Extract person info in this format:\n{structure}"

generate_structure_from_pydantic(model_class, options=None, include_descriptions=True)

Generate a TOON structure template from a Pydantic model for use in LLM prompts.

Parameters:

  • model_class: Pydantic model class (BaseModel subclass)
  • options: Same as generate_structure()
  • include_descriptions: If True, use field descriptions from model

Returns:

  • TOON formatted structure template string

Example:

from pydantic import BaseModel, Field
from toon import generate_structure_from_pydantic

class User(BaseModel):
    id: int = Field(description="user identifier")
    name: str = Field(description="full name")
    email: str = Field(description="email address")

structure = generate_structure_from_pydantic(User)
print(structure)
# Output:
# id: <user identifier>
# name: <full name>
# email: <email address>

CLI Usage

usage: toon [-h] [-o OUTPUT] [-e] [-d] [--delimiter {comma,tab,pipe}]
            [--indent INDENT] [--stats] [--no-strict]
            [--key-folding {off,safe}] [--flatten-depth DEPTH]
            [--expand-paths {off,safe}]
            [input]

TOON (Token-Oriented Object Notation) - Convert between JSON and TOON formats

positional arguments:
  input                 Input file path (or "-" for stdin)

optional arguments:
  -h, --help            show this help message and exit
  -o, --output OUTPUT   Output file path (default: stdout)
  -e, --encode          Force encode mode (JSON to TOON)
  -d, --decode          Force decode mode (TOON to JSON)
  --delimiter {comma,tab,pipe}
                        Array delimiter (default: comma)
  --indent INDENT       Indentation size (default: 2)
  --stats               Show token statistics
  --no-strict           Disable strict validation (decode only)
  --key-folding {off,safe}
                        Key folding mode (encode only)
  --flatten-depth DEPTH Maximum key folding depth (encode only)
  --expand-paths {off,safe}
                        Path expansion mode (decode only)

Advanced Features

Key Folding

Collapse single-key chains into dotted paths:

data = {
    'api': {
        'response': {
            'product': {
                'title': 'Wireless Keyboard'
            }
        }
    }
}

# With key_folding='safe'
toon = encode(data, {'key_folding': 'safe'})
# Output: api.response.product.title: Wireless Keyboard

Path Expansion

Expand dotted keys into nested objects:

toon = 'store.location.zipcode: 10001'

# With expand_paths='safe'
data = decode(toon, {'expand_paths': 'safe'})
# Result: {'store': {'location': {'zipcode': 10001}}}

Custom Delimiters

Choose the delimiter that best fits your data:

# Tab delimiter (better for spreadsheet-like data)
toon = encode(data, {'delimiter': 'tab'})

# Pipe delimiter (when data contains commas)
toon = encode(data, {'delimiter': 'pipe'})

Format Comparison

JSON vs TOON

JSON (247 bytes):

{
  "products": [
    {"id": 101, "name": "Laptop Pro", "price": 1299},
    {"id": 102, "name": "Magic Mouse", "price": 79},
    {"id": 103, "name": "USB-C Cable", "price": 19}
  ]
}

TOON (98 bytes, 60% reduction):

products[3]{id,name,price}:
  101,Laptop Pro,1299
  102,Magic Mouse,79
  103,USB-C Cable,19

When to Use TOON

Use TOON when:

  • ✅ Passing data to LLM APIs (reduce token costs)
  • ✅ Working with uniform tabular data
  • ✅ Context window is limited
  • ✅ Human readability matters

Use JSON when:

  • ❌ Maximum compatibility is required
  • ❌ Data is highly irregular/nested
  • ❌ Working with existing JSON-only tools

Development

Setup

git clone https://github.com/ScrapeGraphAI/toonify.git
cd toonify
pip install -e .[dev]

Running Tests

pytest
pytest --cov=toon --cov-report=term-missing

Running Examples

python examples/basic_usage.py
python examples/advanced_features.py

Performance

Benchmarked across 50 diverse, real-world datasets:

  • 63.9% average size reduction vs JSON for structured data
  • 54.1% average token reduction (directly lowers LLM API costs)
  • Up to 73.4% savings for optimal use cases (tabular data, surveys, analytics)
  • 98% of datasets achieve 40%+ savings
  • Minimal overhead in encoding/decoding (<1ms for typical payloads)

💰 Cost Impact: At GPT-4 pricing, TOON saves $2,147 per million API requests and $5,408 per billion tokens.

📊 View Full Benchmark Results →

Contributing

Contributions are welcome! We appreciate bug fixes, feature additions, documentation improvements, and more.

Quick Start:

  1. Fork the repository
  2. Create a feature branch (git checkout -b feature/amazing-feature)
  3. Make your changes with tests
  4. Run tests (pytest)
  5. Commit your changes (git commit -m 'Add amazing feature')
  6. Push to the branch (git push origin feature/amazing-feature)
  7. Open a Pull Request

For detailed guidelines, please see our Contributing Guide.

License

MIT License - see LICENSE file for details.

Credits

Python implementation inspired by the TypeScript TOON library at toon-format/toon.

Links


Made with love by the ScrapeGraph team

ScrapeGraphAI Logo

About

Toonify: Compact data format reducing LLM token usage by 30-60%

Topics

Resources

Contributing

Stars

Watchers

Forks

Packages

No packages published

Contributors 7