A compact, human-readable serialization format designed for passing structured data to Large Language Models with significantly reduced token usage.
TOON achieves CSV-like compactness while adding explicit structure, making it ideal for:
- Reducing token costs in LLM API calls
- Improving context window efficiency
- Maintaining human readability
- Preserving data structure and types
- ✅ Compact: 64% smaller than JSON on average (tested on 50 datasets)
- ✅ Readable: Clean, indentation-based syntax
- ✅ Structured: Preserves nested objects and arrays
- ✅ Type-safe: Supports strings, numbers, booleans, null
- ✅ Flexible: Multiple delimiter options (comma, tab, pipe)
- ✅ Smart: Automatic tabular format for uniform arrays
- ✅ Efficient: Key folding for deeply nested objects
pip install toonifyFor development:
pip install toonify[dev]With Pydantic support:
pip install toonify[pydantic]from toon import encode, decode
# Encode Python dict to TOON
data = {
'products': [
{'sku': 'LAP-001', 'name': 'Gaming Laptop', 'price': 1299.99},
{'sku': 'MOU-042', 'name': 'Wireless Mouse', 'price': 29.99}
]
}
toon_string = encode(data)
print(toon_string)
# Output:
# products[2]{sku,name,price}:
# LAP-001,Gaming Laptop,1299.99
# MOU-042,Wireless Mouse,29.99
# Decode TOON back to Python
result = decode(toon_string)
assert result == data# Encode JSON to TOON
toon input.json -o output.toon
# Decode TOON to JSON
toon input.toon -o output.json
# Use with pipes
cat data.json | toon -e > data.toon
# Show token statistics
toon data.json --statsTOON supports direct conversion from Pydantic models:
from pydantic import BaseModel
from toon import encode_pydantic, decode_to_pydantic
# Define Pydantic models
class User(BaseModel):
id: int
name: str
email: str
# Encode Pydantic models to TOON
users = [
User(id=1, name='Alice', email='[email protected]'),
User(id=2, name='Bob', email='[email protected]')
]
toon = encode_pydantic(users)
print(toon)
# Output:
# [2]{id,name,email}:
# 1,Alice,[email protected]
# 2,Bob,[email protected]
# Decode TOON back to Pydantic models
decoded_users = decode_to_pydantic(toon, User)
assert all(isinstance(u, User) for u in decoded_users)Features:
- ✅ Direct conversion from Pydantic models (v1 and v2)
- ✅ Support for nested models
- ✅ Exclude unset, None, or default values
- ✅ Field aliases support
- ✅ Full validation on decode
- ✅ Round-trip conversion
See examples/pydantic_usage.py for more examples.
TOON provides a powerful feature to generate response structure templates that can be included in LLM prompts. This tells the model exactly what format to return data in, without needing to provide examples with actual data.
from toon import generate_structure
# Define the expected response structure
schema = {
"name": "name of the person",
"age": "age of the person",
"occupation": "job description of the person"
}
# Generate the structure template
structure = generate_structure(schema)
print(structure)
# Output:
# name: <name of the person>
# age: <age of the person>
# occupation: <job description of the person>
# Use in your LLM prompt
prompt = f"""Extract person information from the text and return it in this format:
{structure}
Text: [your text here...]"""For arrays and complex structures:
schema = {
"products": [{
"name": "product name",
"price": "price in USD",
"rating": "rating from 1-5"
}]
}
structure = generate_structure(schema)
print(structure)
# Output:
# products[N]{name,price,rating}:
# <product name>,<price in USD>,<rating from 1-5>
# ...With Pydantic models:
from pydantic import BaseModel, Field
from toon import generate_structure_from_pydantic
class Product(BaseModel):
name: str = Field(description="product name")
price: float = Field(description="price in USD")
in_stock: bool = Field(description="availability status")
# Generate structure from model
structure = generate_structure_from_pydantic(Product)
# Use in LLM prompts without providing examplesBenefits:
- ✅ No need to include example data in prompts (saves tokens)
- ✅ Clear, unambiguous format specification
- ✅ Works with nested objects and arrays
- ✅ Supports custom delimiters
- ✅ Type-safe with Pydantic models
See examples/structure_template_usage.py for comprehensive examples.
# Simple key-value pairs
title: Machine Learning Basics
chapters: 12
published: true
Primitive arrays (inline):
temperatures: [72.5,68.3,75.1,70.8,73.2]
categories: [electronics,computers,accessories]
Tabular arrays (uniform objects with header):
inventory[3]{sku,product,stock}:
KB-789,Mechanical Keyboard,45
MS-456,RGB Mouse Pad,128
HD-234,USB Headset,67
List arrays (non-uniform or nested):
tasks[2]:
Complete documentation
Review pull requests
server:
hostname: api-prod-01
config:
port: 8080
region: us-east
Strings are quoted only when necessary:
- Contains special characters (
,,:,", newlines) - Has leading/trailing whitespace
- Looks like a literal (
true,false,null) - Is empty
simple: ProductName
quoted: "Product, Description"
escaped: "Size: 15\" display"
multiline: "First feature\nSecond feature"
Convert Python object to TOON string.
Parameters:
data: Python dict or listoptions: Optional dict with:delimiter:'comma'(default),'tab', or'pipe'indent: Number of spaces per level (default: 2)key_folding:'off'(default) or'safe'flatten_depth: Max depth for key folding (default: None)
Example:
toon = encode(data, {
'delimiter': 'tab',
'indent': 4,
'key_folding': 'safe'
})Convert TOON string to Python object.
Parameters:
toon_string: TOON formatted stringoptions: Optional dict with:strict: Validate structure strictly (default: True)expand_paths:'off'(default) or'safe'default_delimiter: Default delimiter (default:',')
Example:
data = decode(toon_string, {
'expand_paths': 'safe',
'strict': False
})encode_pydantic(model, options=None, exclude_unset=False, exclude_none=False, exclude_defaults=False, by_alias=False)
Convert Pydantic model(s) to TOON string.
Parameters:
model: Pydantic model instance or list of model instancesoptions: Same asencode()functionexclude_unset: If True, exclude fields that were not explicitly setexclude_none: If True, exclude fields with None valuesexclude_defaults: If True, exclude fields with default valuesby_alias: If True, use field aliases instead of field names
Example:
from pydantic import BaseModel
from toon import encode_pydantic
class User(BaseModel):
id: int
name: str
email: str | None = None
user = User(id=1, name='Alice')
toon = encode_pydantic(user, exclude_none=True)Decode TOON string to Pydantic model(s).
Parameters:
toon_string: TOON formatted stringmodel_class: Pydantic model class to instantiateoptions: Same asdecode()function
Returns:
- Pydantic model instance or list of instances (depending on input)
Example:
from pydantic import BaseModel
from toon import decode_to_pydantic
class User(BaseModel):
id: int
name: str
toon = "id: 1\nname: Alice"
user = decode_to_pydantic(toon, User)Generate a TOON structure template from a schema definition for use in LLM prompts.
Parameters:
schema: Schema definition as dict or list- Simple fields:
{"field_name": "description"} - Nested objects:
{"field": {"nested": "description"}} - Arrays:
{"field": [{"item_field": "description"}]}
- Simple fields:
options: Optional dict with:delimiter:'comma'(default),'tab', or'pipe'indent: Number of spaces per level (default: 2)
Returns:
- TOON formatted structure template string
Example:
from toon import generate_structure
schema = {
"name": "name of the person",
"age": "age of the person",
"occupation": "job description"
}
structure = generate_structure(schema)
print(structure)
# Output:
# name: <name of the person>
# age: <age of the person>
# occupation: <job description>
# Use in LLM prompt:
prompt = f"Extract person info in this format:\n{structure}"Generate a TOON structure template from a Pydantic model for use in LLM prompts.
Parameters:
model_class: Pydantic model class (BaseModel subclass)options: Same asgenerate_structure()include_descriptions: If True, use field descriptions from model
Returns:
- TOON formatted structure template string
Example:
from pydantic import BaseModel, Field
from toon import generate_structure_from_pydantic
class User(BaseModel):
id: int = Field(description="user identifier")
name: str = Field(description="full name")
email: str = Field(description="email address")
structure = generate_structure_from_pydantic(User)
print(structure)
# Output:
# id: <user identifier>
# name: <full name>
# email: <email address>usage: toon [-h] [-o OUTPUT] [-e] [-d] [--delimiter {comma,tab,pipe}]
[--indent INDENT] [--stats] [--no-strict]
[--key-folding {off,safe}] [--flatten-depth DEPTH]
[--expand-paths {off,safe}]
[input]
TOON (Token-Oriented Object Notation) - Convert between JSON and TOON formats
positional arguments:
input Input file path (or "-" for stdin)
optional arguments:
-h, --help show this help message and exit
-o, --output OUTPUT Output file path (default: stdout)
-e, --encode Force encode mode (JSON to TOON)
-d, --decode Force decode mode (TOON to JSON)
--delimiter {comma,tab,pipe}
Array delimiter (default: comma)
--indent INDENT Indentation size (default: 2)
--stats Show token statistics
--no-strict Disable strict validation (decode only)
--key-folding {off,safe}
Key folding mode (encode only)
--flatten-depth DEPTH Maximum key folding depth (encode only)
--expand-paths {off,safe}
Path expansion mode (decode only)
Collapse single-key chains into dotted paths:
data = {
'api': {
'response': {
'product': {
'title': 'Wireless Keyboard'
}
}
}
}
# With key_folding='safe'
toon = encode(data, {'key_folding': 'safe'})
# Output: api.response.product.title: Wireless KeyboardExpand dotted keys into nested objects:
toon = 'store.location.zipcode: 10001'
# With expand_paths='safe'
data = decode(toon, {'expand_paths': 'safe'})
# Result: {'store': {'location': {'zipcode': 10001}}}Choose the delimiter that best fits your data:
# Tab delimiter (better for spreadsheet-like data)
toon = encode(data, {'delimiter': 'tab'})
# Pipe delimiter (when data contains commas)
toon = encode(data, {'delimiter': 'pipe'})JSON (247 bytes):
{
"products": [
{"id": 101, "name": "Laptop Pro", "price": 1299},
{"id": 102, "name": "Magic Mouse", "price": 79},
{"id": 103, "name": "USB-C Cable", "price": 19}
]
}TOON (98 bytes, 60% reduction):
products[3]{id,name,price}:
101,Laptop Pro,1299
102,Magic Mouse,79
103,USB-C Cable,19
Use TOON when:
- ✅ Passing data to LLM APIs (reduce token costs)
- ✅ Working with uniform tabular data
- ✅ Context window is limited
- ✅ Human readability matters
Use JSON when:
- ❌ Maximum compatibility is required
- ❌ Data is highly irregular/nested
- ❌ Working with existing JSON-only tools
git clone https://github.com/ScrapeGraphAI/toonify.git
cd toonify
pip install -e .[dev]pytest
pytest --cov=toon --cov-report=term-missingpython examples/basic_usage.py
python examples/advanced_features.pyBenchmarked across 50 diverse, real-world datasets:
- 63.9% average size reduction vs JSON for structured data
- 54.1% average token reduction (directly lowers LLM API costs)
- Up to 73.4% savings for optimal use cases (tabular data, surveys, analytics)
- 98% of datasets achieve 40%+ savings
- Minimal overhead in encoding/decoding (<1ms for typical payloads)
💰 Cost Impact: At GPT-4 pricing, TOON saves $2,147 per million API requests and $5,408 per billion tokens.
📊 View Full Benchmark Results →
Contributions are welcome! We appreciate bug fixes, feature additions, documentation improvements, and more.
Quick Start:
- Fork the repository
- Create a feature branch (
git checkout -b feature/amazing-feature) - Make your changes with tests
- Run tests (
pytest) - Commit your changes (
git commit -m 'Add amazing feature') - Push to the branch (
git push origin feature/amazing-feature) - Open a Pull Request
For detailed guidelines, please see our Contributing Guide.
MIT License - see LICENSE file for details.
Python implementation inspired by the TypeScript TOON library at toon-format/toon.
- GitHub: https://github.com/ScrapeGraphAI/toonify
- PyPI: https://pypi.org/project/toonify/
- Documentation: https://github.com/ScrapeGraphAI/toonify#readme
- Format Spec: https://github.com/toon-format/toon
Made with love by the ScrapeGraph team

