Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
35 commits
Select commit Hold shift + click to select a range
c335f6e
train with only layer distillation losses
oleksost Dec 16, 2025
e06a4b2
unscaled loss llogging + training with distillation loss factor = 0
oleksost Dec 16, 2025
179ae25
make logging more explicit
oleksost Dec 17, 2025
af456f0
Merge remote-tracking branch 'origin/main' into train_only_layer_losses
oleksost Dec 17, 2025
9968aac
clean + tests
oleksost Dec 17, 2025
945c5a7
nvm
oleksost Dec 17, 2025
4b6e3d7
forward KL
oleksost Dec 19, 2025
c5fefa0
test forward kl
oleksost Dec 19, 2025
4119596
wip: report unscaled + kl loss
oleksost Dec 19, 2025
b55a0a4
loss config
oleksost Dec 22, 2025
097baeb
wip
oleksost Dec 22, 2025
d773d98
tests
oleksost Dec 22, 2025
35400c1
Merge remote-tracking branch 'origin/main' into train_only_layer_losses
oleksost Dec 22, 2025
282925c
test
oleksost Dec 22, 2025
0f73ea2
tests
oleksost Dec 22, 2025
04a0193
Merge branch 'main' into train_only_layer_losses
oleksost Dec 22, 2025
fa85c41
wip
oleksost Dec 22, 2025
feb416e
Merge branch 'train_only_layer_losses' of https://github.com/ServiceN…
oleksost Dec 22, 2025
31cfb84
wip
oleksost Dec 23, 2025
24fe67b
no grad if factor 0
oleksost Dec 23, 2025
00f6118
Merge remote-tracking branch 'origin/main' into train_only_layer_losses
oleksost Dec 23, 2025
0cadf98
Merge branch 'main' into train_only_layer_losses
oleksost Dec 23, 2025
0e562e9
addressed comments
oleksost Dec 23, 2025
2a474e2
Merge branch 'train_only_layer_losses' of https://github.com/ServiceN…
oleksost Dec 23, 2025
52c1c11
addressed comments
oleksost Dec 23, 2025
406d0a2
Removed Targets class
oleksost Dec 30, 2025
f25380a
fixes
oleksost Dec 30, 2025
8adb7dd
imports
oleksost Dec 30, 2025
1ce641d
polish naming
oleksost Jan 6, 2026
95f14af
addresseing comments
oleksost Jan 8, 2026
5ad4c0c
explicit z_loss grads
oleksost Jan 8, 2026
0a66e14
removed z_loss as aux loss
oleksost Jan 8, 2026
f8f7041
move loss configs to the lm config
oleksost Jan 8, 2026
ab9c917
tests
oleksost Jan 8, 2026
89470dc
Merge branch 'main' into train_only_layer_losses
oleksost Jan 9, 2026
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 0 additions & 5 deletions fast_llm/functional/config.py
Original file line number Diff line number Diff line change
Expand Up @@ -100,11 +100,6 @@ class CrossEntropyImpl(str, enum.Enum):
triton = "triton"


class DistillationLossImpl(str, enum.Enum):
reverse_kl = "reverse_kl"
cross_entropy = "cross_entropy"


class TargetFormat(enum.StrEnum):
labels = "labels"
logits = "logits"
Expand Down
69 changes: 67 additions & 2 deletions fast_llm/functional/cross_entropy.py
Original file line number Diff line number Diff line change
Expand Up @@ -85,6 +85,7 @@ def _fused_cross_entropy_forward_backward(
target_format: TargetFormat,
group: ProcessGroup | None = None,
teacher_softmax_temperature: float = 1.0,
return_target_entropy: bool = False,
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

return_kl_loss instead?

Copy link
Contributor Author

@oleksost oleksost Jan 8, 2026

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

_fused_cross_entropy_forward_backward, as the name implies, should not return kl loss. I find this more explicit.

Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

KL and cross-entropy are basically the same thing, and this is a private method anyway so the name is not that important. I'm more worried about the inconsistent return type and extra complexity this is creating.

) -> tuple[torch.Tensor, torch.Tensor | None]:
"""
A fused implementation of cross-entropy with torch compile.
Expand All @@ -97,7 +98,10 @@ def _fused_cross_entropy_forward_backward(
logits_norm, exp_logits, sum_exp_logits = _fused_softmax_base(logits, logits_scale_factor, group)

if target_format == TargetFormat.logits:
target = _fused_softmax(target, logits_scale_factor / teacher_softmax_temperature, group)
target_logits, exp_logits_targets, sum_exp_target_logits = _fused_softmax_base(
target, logits_scale_factor / teacher_softmax_temperature, group
)
target = exp_logits_targets / sum_exp_target_logits

if target_format == TargetFormat.labels:
target = target.unsqueeze(-1)
Expand Down Expand Up @@ -158,6 +162,18 @@ def _fused_cross_entropy_forward_backward(
loss = per_sample_loss.mean()
if target_format != TargetFormat.labels and group is not None:
all_reduce(loss, op=ReduceOp.AVG, group=group)
if return_target_entropy:
if target_format == TargetFormat.logits:
teacher_log_prob = target_logits - sum_exp_target_logits.log()
else:
teacher_log_prob = torch.log(target + 1e-20)
target_entropy = -(target * teacher_log_prob).sum(dim=-1)
if loss_mask is not None:
target_entropy = target_entropy * loss_mask.squeeze(-1)
target_entropy = target_entropy.mean()
if group is not None:
all_reduce(target_entropy, op=ReduceOp.SUM, group=group)
return loss, grad, target_entropy

return loss, grad

Expand Down Expand Up @@ -237,7 +253,6 @@ def _reverse_kl_forward_backward(
group: ProcessGroup | None = None,
logits_scale_factor: float = 1.0,
teacher_softmax_temperature: float = 1.0,
**kwargs,
) -> tuple[torch.Tensor, torch.Tensor | None]:
"""
Reverse KL using PyTorch's native kl_div function.
Expand Down Expand Up @@ -357,3 +372,53 @@ def reverse_kl_forward_backward(
group=group,
)
return distillation_loss, distillation_grad


def forward_kl_forward_backward(
logits: torch.Tensor,
target: torch.Tensor,
loss_mask: torch.Tensor | None,
grad_output: float | None,
group: ProcessGroup | None = None,
logits_scale_factor: float = 1.0,
teacher_softmax_temperature: float = 1.0,
target_format: TargetFormat = TargetFormat.labels,
sequence_parallel_logits: bool = False,
) -> tuple[torch.Tensor, torch.Tensor | None]:
"""
Compute forward KL divergence: KL(p||q) where p is the target distribution (teacher) and q is the predicted (student).
This is mode-covering (vs. mode-seeking for reverse KL) and useful for:
- Encouraging the model to cover all modes of the target distribution
- Spreading probability mass broadly across the target support
- Standard distillation scenarios where you want to match the full teacher distribution

Key differences from reverse KL:
- Forward KL: KL(p||q) = mode-covering (spreads mass broadly)
- Reverse KL: KL(q||p) = mode-seeking (focuses on target modes)

Takes:
logits: [BxS, V] or [B, S, V], where V is local vocab size
target: [BxS, V] or [B, S, V] (logits format)
loss_mask: [BxS] or [B, S] or None
...

Returns:
loss: Forward KL divergence loss
grad: Gradients w.r.t. logits
"""
assert target_format == TargetFormat.logits, "Forward KL only supports logits format"
Assert.eq(target.shape, logits.shape)
distillation_loss, distillation_grad, teacher_entropy = _fused_cross_entropy_forward_backward(
logits=logits,
target=target,
loss_mask=loss_mask,
grad_output=grad_output,
logits_scale_factor=logits_scale_factor,
target_format=target_format,
group=group,
teacher_softmax_temperature=teacher_softmax_temperature,
return_target_entropy=True,
)
distillation_loss -= teacher_entropy

return distillation_loss, distillation_grad
42 changes: 29 additions & 13 deletions fast_llm/layers/common/auxiliary_loss.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,18 +21,34 @@ def calculate_z_loss(logits: torch.Tensor, logits_scale_factor: float = 1.0) ->

def z_loss(
logits: torch.Tensor,
z_loss_factor: float,
training: bool,
grad_scale: float | None = None,
losses: dict | None = None,
loss_name: str | None = None,
logits_scale_factor: float = 1.0,
) -> torch.Tensor:
if losses is not None or (training and grad_scale is not None):
loss = calculate_z_loss(logits, logits_scale_factor=logits_scale_factor)
if losses is not None and loss_name is not None:
losses[loss_name].append(loss.detach())
if training and grad_scale is not None:
logits = AuxiliaryLoss.apply(logits, loss, z_loss_factor * grad_scale)

return logits
) -> tuple[torch.Tensor, torch.Tensor | None]:
"""
Compute z-loss and its gradient.

Z-loss = mean(logsumexp(logits, dim=-1) ** 2)

Returns:
loss: The z-loss value (unscaled)
grad: The gradient w.r.t. logits (scaled by grad_scale), or None if grad_scale is None
"""
if logits_scale_factor != 1.0:
scaled_logits = logits * logits_scale_factor
else:
scaled_logits = logits

# Forward: z_loss = mean(logsumexp^2)
lse = torch.logsumexp(scaled_logits, dim=-1) # (N,)
loss = torch.mean(lse**2)

# Backward: grad = (2/N) * lse * softmax(scaled_logits)
grad = None
if grad_scale is not None:
N = scaled_logits.shape[0]
softmax_logits = torch.softmax(scaled_logits, dim=-1)
grad = (2.0 / N) * lse.unsqueeze(-1) * softmax_logits * grad_scale
if logits_scale_factor != 1.0:
grad = grad * logits_scale_factor # Chain rule for logits_scale_factor

return loss, grad
Loading