Skip to content

Shaksham-singhal/Project-UsedCar-Chatbot

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

image

CAR CHATBOT

Overview

This project is a chatbot designed for evaluating car-related queries. It leverages a combination of retrieval-augmented generation (RAG) and NLP-based evaluation metrics.

Project Structure

CAR CHATBOT
│-- car_chroma_db/               # ChromaDB storage
│   │-- chroma.sqlite3           # SQLite database for embeddings
│-- src/
│   │-- testing_codes/           # Contains evaluation scripts and datasets
│   │-- chunking.py              # Script for data preprocessing and chunking
│   │-- data_eval.py             # Evaluation script for the dataset
│   │-- embedding_store.py       # Script to store and retrieve embeddings
│   │-- eval_testing_03.py       # Main evaluation script
│   │-- evaluation_results.json  # JSON file with evaluation results
│   │-- evaluation.py            # Evaluation logic implementation
│   │-- llm_rag.py               # Core chatbot logic
│   │-- main.py                  # Main execution script
│   │-- more_details_prompt.txt  # Additional prompts for chatbot
│   │-- requirement.txt          # Required dependencies
│   │-- scrapper.py              # Web scraping script
│   │-- streamlit.py             # UI implementation using Streamlit
│-- car_evaluation_dataset.json  # Dataset for car evaluation
│-- cartrade_cars_chunked.json   # Processed data fed to the chatbot
│-- chatbot_evaluation_detailed.csv  # Detailed chatbot evaluation
│-- chatbot_evaluation_report.json  # JSON report of chatbot evaluation

Setup Instructions

  1. Install Dependencies:

    pip install -r requirement.txt
  2. Run the Chatbot:

    python llm_rag.py
  3. Run the UI Interface:

    streamlit run streamlit.py
  4. Run Evaluation:

    python eval_testing_03.py

    This script calculates BERT, ROUGE, METEOR, and F1 scores for evaluation.

Data Sources

  • cartrade_cars_chunked.json contains the actual data fed to the model.
  • The dataset has been chunked and stored for efficient retrieval.

Description of Key Files

  • llm_rag.py - Contains the core logic for the chatbot.
  • scrapper.py - Scrapes data from car-related sources.
  • streamlit.py - Streamlit-based UI for interacting with the chatbot.
  • eval_testing_03.py - Computes NLP-based evaluation metrics.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages