QueryMind is an intelligent, context-aware Q&A assistant built with Streamlit, LangChain, Google Gemini, and FAISS.
It enables users to create a custom knowledge base from CSV data and retrieve precise, context-driven answers using Retrieval-Augmented Generation (RAG).
QueryMind transforms structured CSV data into a searchable knowledge base and uses Google Gemini to generate contextually accurate answers.
It demonstrates seamless integration of:
- LangChain RAG pipelines
- Gemini 2.5 Flash model
- FAISS vector search
- Hugging Face embeddings
- Streamlit UI for interactivity
- 🧾 CSV Knowledgebase Creation — Converts your CSV into embeddings using Hugging Face’s Instructor-large model.
- 🔍 Semantic Retrieval — Uses FAISS to find the most relevant context.
- 🤖 Gemini-Powered QA — Generates factual, grounded answers using Gemini 2.5 Flash.
- 🧩 LangChain Integration — Implements document and retrieval chains for efficient RAG workflows.
- ⚡ Streamlit UI — Interactive, minimal, and intuitive interface.
- 🔒 Secure Setup — API key management using
.env.
| Category | Tools / Frameworks |
|---|---|
| Frontend | Streamlit |
| Backend (LLM Integration) | LangChain |
| Language Model | Google Gemini 2.5 Flash |
| Vector Store | FAISS |
| Embeddings | Hugging Face Instructor-large |
| Env Management | Python-dotenv |
| Language | Python 3.10+ |
Follow these simple steps to get QueryMind running locally 👇
1️⃣ Clone the Repository
git clone https://github.com/Shanu06github/QUERYMIND.git
2️⃣ Navigate to the Project Directory
cd QueryMind
3️⃣ Add Your Google API Key
GOOGLE_API_KEY=your_google_api_key_here
4️⃣ Run the Application
streamlit run main.py
5️⃣
Once the app starts, open the displayed local URL (usually http://localhost:8501) in your browser.
Try out few sample questions from the csv file (filewithresponse.csv)