Skip to content

ShawnStrasser/RITIS_INRIX_API

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

24 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

RITIS INRIX API

PyPI PyPI - Python Version GitHub License

GitHub issues Unit Tests

A Python package for automated retrieval of traffic data from RITIS and INRIX APIs for INRIX XD Segments.

Installation

pip install ritis-inrix-api

Core Functionality

This package provides tools to:

  • Download Historical Data: Retrieve historical XD segment data from the RITIS API for specific date ranges or on a daily schedule.
  • Fetch Real-Time Data: Get current traffic speeds from the INRIX API.
  • Scrape Segment Geometries: Identify and retrieve XD segment geometries based on a list of latitude/longitude coordinates.

Examples

Here are some examples of how to use the package.

RITIS API: Download Historical Data

You can download data for a specific date range or set up a recurring daily download.

Download data for a single period

import os
from ritis_inrix_api import RITIS_Downloader

segments = [1236893704, 1236860943]

updater = RITIS_Downloader(
    api_key=os.environ.get('RITIS_API_KEY'),
    segments=segments, # can be list of IDs or path to a .txt file
    columns=['speed', 'travel_time_seconds'], # Specify desired columns
    start_time='06:00:00', #default is '00:00:00
    end_time='06:15:00', #default is '23:59:00'
    bin_size=5, #Enter 1, 5, 10, 15(default), or 60
    units='seconds', #'seconds' or 'minutes'
    #download_path='Data', #where to save data

) 

# Returns a pandas DataFrame (unless download_path is specified)
df = updater.single_download('2025-09-01', '2025-09-02', 'test')
Sample Output
xd_id measurement_tstamp speed travel_time_seconds
0 1236860943 2025-09-01 06:00:00 25 11.95
1 1236860943 2025-09-01 06:05:00 25 11.95
2 1236860943 2025-09-01 06:10:00 25 11.95

Set up automated daily downloads

This will download data from the last run date through yesterday one day at a time and save it as Parquet files at the specified download path. This option is intended to run daily via a scheduler like cron or Windows Task Scheduler.

import os
from ritis_inrix_api import RITIS_Downloader

updater = RITIS_Downloader(
    api_key=os.environ.get('RITIS_API_KEY'),
    download_path='Data', # Data will be saved in this directory
    segments='sample_XD_segments.txt', # Path to a file with segment IDs
    last_run_path='last_run.txt' # Path for text file containing last run datetime
) 

updater.daily_download()

INRIX API: Fetch Real-Time Speeds

import os
from ritis_inrix_api import INRIX_Downloader

inrix_downloader = INRIX_Downloader(
    app_id=os.environ.get('INRIX_APP_ID'),
    hash_token=os.environ.get('INRIX_HASH_TOKEN'),
    segments_path='sample_XD_segments.txt'
)

# Returns a pandas DataFrame
speed_data = inrix_downloader.get_speed_data()
Sample Output
code type speed average
0 1236893704 XDS 53 52
1 1236860943 XDS 21 19

Geometry Scraper: Find Segments and Geometries

This tool finds XD segment geometries within a specified radius of given latitude/longitude points.

How to get the authentication cookie

The Geometry Scraper requires a valid browser cookie from a logged-in RITIS session to authenticate its requests. Open network tab in dev tools look for a request that has a cookie, copy and paste the cookie when prompted in the console.

Example Usage

from ritis_inrix_api import GeometryScraper

# A list of (latitude, longitude) tuples
locations = [
    (42.34072155027376, -122.89930147132378),
    (44.3029045246138, -120.842181329508),
    # ... more locations
]

# The scraper will prompt you to paste the cookie into the console
scraper = GeometryScraper()
geometry_data = scraper.process_locations(locations, buffer_size=50) # buffer size in yards

# Save the new segment IDs to a file
segments = list(geometry_data['segID'])
with open('Map_Data/XD_Segments.txt', 'w') as f:
    f.write(','.join(map(str, segments)))
Sample Output

The script will print progress messages as it runs:

Processing 1002 locations in batches of 500
Processing batch 1
Processing batch 2
Processing batch 3
Combining all batches into a single DataFrame
There were 5008 segments found for the provided signals.

The final geometry_data DataFrame will look like this:

zip country segID bearing county ... coordinates
0 97051 USA 1237027426 E COLUMBIA ... [[-122.8316, 45.84865], [-122.83134, 45.84852], ...]
1 97756 USA 1237004066 S DESCHUTES ... [[-121.19391, 44.24292], [-121.1941, 44.2427], ...]
2 97527 USA 125164532 E JOSEPHINE ... [[-123.32078, 42.42779], [-123.32054, 42.42772], ...]

About

Automated download of XD Segment data from RITIS or INRIX API, for daily or real time processing.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages