Skip to content

Commit 58fbba0

Browse files
authored
Added some more of the documentation. Need to add references. not sure if the tables and code snippets look how I intend them to
1 parent 881605c commit 58fbba0

File tree

1 file changed

+80
-0
lines changed
  • documentation/multi_physics/user-guide/material_models/material_models_list

1 file changed

+80
-0
lines changed

documentation/multi_physics/user-guide/material_models/material_models_list/readme.md

Lines changed: 80 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -90,3 +90,83 @@ $$ \Psi_{vol} = K_p G(J) $$
9090
where $$ K_p$$ can be interpreted as the bulk modulus. $$G(J)$$ is the penalty function and takes different forms depending on the type of model. Two parameters are p and pl are defined internally to add to the stresses and elasticity tensors. “Struct” , the displacement based formulation calculates these as:
9191
$$ p = \frac{\partial \Psi_{vol}}{\partial J}$$
9292
$$ pl = p + J\frac{dp}{dJ}$$
93+
94+
The mixed displacement-pressure formulation does not calculate for p and pl this way. Instead, they are solved along with the displacements.
95+
96+
97+
**Quadratic Model:**
98+
$$ G(J) = \frac{1}{2} (J-1)^2 $$
99+
$$p = K_p (J -1) $$
100+
$$ pl = K_p (2J - 1) $$
101+
102+
**Simo-Taylor91 Model:**
103+
$$ G(J) = \frac{1}{4}(J^2 - 2 ln(J)) $$
104+
$$p = \frac{1}{2} K_p (J -\frac{1}{J}) $$
105+
$$ pl = K_p J $$
106+
107+
**Miehe94 Model:**
108+
$$ G(J) = J - ln(J) $$
109+
$$p = K_p (1 - \frac{1}{J}) $$
110+
$$ pl = K_p$$
111+
112+
So, if using “struct”, this is how you would input the volumetric model:
113+
114+
<div class="struct_vol">
115+
&lt;<strong>Dilational_penalty_model&gt;</strong> <i>ST91</i> &lt;/<strong>Dilational_penalty_model</strong>&gt;
116+
&lt;<strong>Penalty_parameter&gt;</strong> <i>4.0E9</i> &lt;/<strong>Penalty_parameter</strong>&gt;
117+
</div>
118+
119+
For “ustruct”:
120+
<div class="ustruct_vol">
121+
&lt;<strong>Dilational_penalty_model&gt;</strong> <i>ST91</i> &lt;/<strong>Dilational_penalty_model</strong>&gt;
122+
</div>
123+
124+
Isochoric Models:
125+
126+
**Saint Venant-Kirchhoff**
127+
128+
This model is an extension of the linear elastic model with the strain energy postulated as a quadratic function of the Green-Lagrange strain tensor. It is an isotropic material model.
129+
$$\Psi_{iso} = \frac{\lambda}{2} tr(\mathbf{E})^2 + \mu tr(\mathbf{E}^2) $$
130+
131+
where $$\lambda$$ and $$\mu$$ are Lamé constants.
132+
133+
In the code (see file set_material_props.h),
134+
$$ C_{10} = \lambda $$
135+
$$ C_{01} = \mu $$
136+
137+
Since these parameters are set automatically, we only need to specify the constitutive model type.
138+
139+
<div class="stvk">
140+
&lt;<strong>Constitutive_model</strong> <i>type="stVK"</i> &gt; &lt;/<strong>Constitutive_model</strong>&gt;
141+
</div>
142+
143+
The 2nd Piola-Kirchoff stress is given by
144+
145+
$$ \mathbf{S} = \lambda tr(\mathbf{E}) \mathbf{I} + 2\mu \mathbf{E}$$
146+
147+
**NOTE:** To modify the Lamé constants for any model that uses default parameters, we do it through specifying the elasticity modulus $$E$$ and poisson’s ratio $$\nu$$.
148+
$$ \mu = \frac{E}{2(1+\nu)} $$
149+
$$ \lambda = \frac{E \nu}{(1+\nu)(1-2\nu)} $$
150+
The bulk modulus $$\kappa$$ is given by
151+
$$ \kappa = \frac{E}{3(1-2\nu)} $$
152+
153+
$$\lambda$$ and $$\kappa$$ are set to zero if the material is incompressible, i.e. $$\nu=0.5$$.
154+
155+
<div class="stvk">
156+
&lt;<strong>Elasticity_modulus&gt;</strong> <i>240.56596e6</i> &lt;/<strong>Elasticity_modulus</strong>&gt;
157+
&lt;<strong>Poisson_ratio&gt;</strong> <i>0.4999999</i> &lt;/<strong>Poisson_ratio</strong>&gt;
158+
</div>
159+
160+
**Neo-Hookean model**
161+
$$ \Psi_{iso} = C_{10} (\bar{I}_1 - 3) $$
162+
163+
<div class="stvk">
164+
&lt;<strong>Constitutive_model</strong> <i>type="neoHookean"</i> &gt; &lt;/<strong>Constitutive_model</strong>&gt;
165+
</div>
166+
167+
The parameter $$ C_{10}$$ is automatically set (see file set_material_props.h):
168+
169+
$$ C_{10} = \frac{\mu}{2} $$
170+
171+
**Holzapfel-Gasser-Ogden model**
172+
$$ \Psi_{aniso} = \frac{a_4}{b_4} \[ exp\{ b_4( \kappa \bar{I}_1 + (1-3\kappa)\bar{I}_{4} - 1)^2 \} - 1\] + \frac{a_6}{b_6} \[ exp\{ b_6( \kappa \bar{I}_1 + (1-3\kappa)\bar{I}_{6} - 1)^2 \} - 1\] $$

0 commit comments

Comments
 (0)