Skip to content
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Empty file added tests/buffers/__init__.py
Empty file.
89 changes: 89 additions & 0 deletions tests/buffers/test_recurrent_buff.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,89 @@
import pytest
import numpy as np
import torch
import torch as th
from gymnasium import spaces

from sb3_contrib.common.recurrent.buffers import RecurrentDictRolloutBuffer
from sb3_contrib.common.recurrent.type_aliases import RNNStates


import pytest
import numpy as np
import torch as th
from sb3_contrib.common.recurrent.buffers import pad, pad_and_flatten, create_sequencers


@pytest.mark.parametrize("n_envs", [1, 2, 5])
# @pytest.mark.parametrize("n_envs", [1,])
@pytest.mark.parametrize("buffer_size", [100, 200])
@pytest.mark.parametrize(
"observation_space",
[
spaces.Dict({"obs": spaces.Box(low=-1, high=1, shape=(3,), dtype=np.float32)}),
spaces.Dict({"obs": spaces.MultiDiscrete([1, 1, 1])}),
],
)
@pytest.mark.parametrize("action_space", [spaces.Box(low=-1, high=1, shape=(2,), dtype=np.float32)])
@pytest.mark.parametrize("hidden_state_size", [64, 128])
@pytest.mark.parametrize("batch_size", [64, 100])
@pytest.mark.parametrize("lstm_num_layers", [1, 3])
def test_recurrent_dict_rollout_buffer_get(
n_envs,
buffer_size,
observation_space,
action_space,
hidden_state_size,
batch_size,
lstm_num_layers,
):
single_hs_shape = (lstm_num_layers, n_envs, hidden_state_size)

hidden_state_shape = (buffer_size, *single_hs_shape)
rollout_buffer = RecurrentDictRolloutBuffer(
buffer_size=buffer_size,
observation_space=observation_space,
action_space=action_space,
hidden_state_shape=hidden_state_shape,
device="cpu",
gae_lambda=0.95,
gamma=0.99,
n_envs=n_envs,
)
buffer_size = rollout_buffer.buffer_size
n_envs = rollout_buffer.n_envs
assert rollout_buffer.hidden_states_pi.shape == (buffer_size, *single_hs_shape)
assert rollout_buffer.observations["obs"].shape == (buffer_size, n_envs, 3)
episode_start = np.array([False], dtype=bool)
observation = {"obs": np.array([[0.1, 0.2, 0.3]] * n_envs, dtype=np.float32)}
action = np.array([[0.1, -0.1]] * n_envs, dtype=np.float32)
reward = np.array([0.5] * n_envs, dtype=np.float32)
value = th.tensor([0.1] * n_envs)
log_prob = th.tensor([-0.1] * n_envs)
lstm_states = RNNStates(
pi=(th.ones(single_hs_shape), th.ones(single_hs_shape)),
vf=(th.ones(single_hs_shape), th.ones(single_hs_shape)),
)
lstm_states.pi[0][:, 0, :] *= 2
lstm_states.pi[1][:, 0, :] *= 2
lstm_states.vf[0][:, 0, :] *= 2
lstm_states.vf[1][:, 0, :] *= 2
for _ in range(buffer_size - 1):
rollout_buffer.add(observation, action, reward, episode_start, value, log_prob, lstm_states=lstm_states)
episode_start = np.array([False], dtype=bool)
assert not rollout_buffer.full
rollout_buffer.add(observation, action, reward, episode_start, value, log_prob, lstm_states=lstm_states)
assert rollout_buffer.full
assert rollout_buffer.hidden_states_pi.shape == (buffer_size, *single_hs_shape)
assert rollout_buffer.cell_states_pi.shape == (buffer_size, *single_hs_shape)
assert rollout_buffer.hidden_states_vf.shape == (buffer_size, *single_hs_shape)
assert rollout_buffer.cell_states_vf.shape == (buffer_size, *single_hs_shape)

for i in range(10):
sample = next(rollout_buffer.get(batch_size=batch_size))
assert sample.observations["obs"].shape[-1] == 3, f"obs epoch {i}"
assert sample.actions.shape[-1] == 2, f"actions epoch {i}"
assert len(set(torch.unique(sample.lstm_states.pi[0]))) == 1
# todo: define behavior