Skip to content
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -30,6 +30,7 @@ exclude = """(?x)(
| sb3_contrib/ars/ars.py$
| sb3_contrib/common/recurrent/policies.py$
| sb3_contrib/common/recurrent/buffers.py$
| sb3_contrib/common/torch_layers.py$
| tests/test_train_eval_mode.py$
)"""

Expand Down
13 changes: 11 additions & 2 deletions sb3_contrib/common/recurrent/buffers.py
Original file line number Diff line number Diff line change
Expand Up @@ -228,6 +228,11 @@ def _get_samples(
lstm_states_pi = (self.to_torch(lstm_states_pi[0]).contiguous(), self.to_torch(lstm_states_pi[1]).contiguous())
lstm_states_vf = (self.to_torch(lstm_states_vf[0]).contiguous(), self.to_torch(lstm_states_vf[1]).contiguous())

# See issue GH#284
episode_starts = np.logical_or(self.episode_starts[batch_inds], env_change[batch_inds]).astype(
self.episode_starts.dtype
)

return RecurrentRolloutBufferSamples(
# (batch_size, obs_dim) -> (n_seq, max_length, obs_dim) -> (n_seq * max_length, obs_dim)
observations=self.pad(self.observations[batch_inds]).reshape((padded_batch_size, *self.obs_shape)),
Expand All @@ -237,7 +242,7 @@ def _get_samples(
advantages=self.pad_and_flatten(self.advantages[batch_inds]),
returns=self.pad_and_flatten(self.returns[batch_inds]),
lstm_states=RNNStates(lstm_states_pi, lstm_states_vf),
episode_starts=self.pad_and_flatten(self.episode_starts[batch_inds]),
episode_starts=self.pad_and_flatten(episode_starts),
mask=self.pad_and_flatten(np.ones_like(self.returns[batch_inds])),
)

Expand Down Expand Up @@ -372,6 +377,10 @@ def _get_samples(
observations = {key: self.pad(obs[batch_inds]) for (key, obs) in self.observations.items()}
observations = {key: obs.reshape((padded_batch_size,) + self.obs_shape[key]) for (key, obs) in observations.items()}

episode_starts = np.logical_or(self.episode_starts[batch_inds], env_change[batch_inds]).astype(
self.episode_starts.dtype
)

return RecurrentDictRolloutBufferSamples(
observations=observations,
actions=self.pad(self.actions[batch_inds]).reshape((padded_batch_size,) + self.actions.shape[1:]),
Expand All @@ -380,6 +389,6 @@ def _get_samples(
advantages=self.pad_and_flatten(self.advantages[batch_inds]),
returns=self.pad_and_flatten(self.returns[batch_inds]),
lstm_states=RNNStates(lstm_states_pi, lstm_states_vf),
episode_starts=self.pad_and_flatten(self.episode_starts[batch_inds]),
episode_starts=self.pad_and_flatten(episode_starts),
mask=self.pad_and_flatten(np.ones_like(self.returns[batch_inds])),
)