Skip to content

SwaggerTagger/darknet

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Our Modifications to Darknet

Machine Readable Output

Have darknet output machine readable (json) predictions instead of writing the results directly to the bounding boxes of an image. For this purpose darknet detector now recognizes the -tagger-output switch, which will disable all writes to stdout except when the predictions are written. Example:

./darknet detector test cfg/coco.data cfg/yolo.cfg yolo.weights data/dog.jpg -tagger-output 2>/dev/null
{"input": "data/dog.jpg", "time": 13.036422, "matches": [
{"class": "dog", "probability": 0.823520, "left": 132, "right": 321, "top": 231, "bottom": 521 }
, {"class": "truck", "probability": 0.643006, "left": 467, "right": 680, "top": 84, "bottom": 168 }
, {"class": "bicycle", "probability": 0.852180, "left": 95, "right": 588, "top": 123, "bottom": 448 }
], "count": 3 }

Darknet Logo

#Darknet# Darknet is an open source neural network framework written in C and CUDA. It is fast, easy to install, and supports CPU and GPU computation.

For more information see the Darknet project website.

For questions or issues please use the Google Group.

About

Convolutional Neural Networks

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • C 91.6%
  • Cuda 7.5%
  • Other 0.9%