Skip to content

Tallisgo/Yolov5-Face

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Yolov5-Face

本文记录了复现yolov5-face过程。

数据集准备

  1. 下载数据集Widerface images数据集annotations

  2. 在当前目录新建 original/文件夹,并将下载内容解压到original文件夹中的指定位置,文件夹格式如图所示:

    |---original
    |   |---WIDER_train
    |   |   |---images
    |   |   |   |---0-Parade
    |   |   |   |   |---0_Parade_marchingband_1_5.jpg
    |   |   |   |   |---0_Parade_marchingband_1_6.jpg
    |   |   |   |   |---0_Parade_marchingband_1_6.jpg
    |   |   |   |---1-Handshaking
    |   |   |   |   |---1_Handshaking_Handshaking_1_42.jpg
    |   |   |   |   |---1_Handshaking_Handshaking_1_46.jpg
    |   |   |   |   |---1_Handshaking_Handshaking_1_59.jpg
    |   |   |--- label.txt
    |   |---WIDER_val
    |   |   |---images
    |   |   |   |---0-Parade
    |   |   |   |   |---0_Parade_marchingband_1_20.jpg
    |   |   |   |   |---0_Parade_marchingband_1_74.jpg
    |   |   |   |   |---0_Parade_marchingband_1_78.jpg
    |   |   |   |---1-Handshaking
    |   |   |   |   |---1_Handshaking_Handshaking_1_35.jpg
    |   |   |   |   |---1_Handshaking_Handshaking_1_94.jpg
    |   |   |   |   |---1_Handshaking_Handshaking_1_107.jpg
    |   |   |--- label.txt
    
    
    
    cd YOLOV5-Face
    mkdir original
    
    cd ~/Downloads
    unzip -d /the/path/of/YOLOV5-Face/original WIDER_train.zip
    unzip -d /the/path/of/YOLOV5-Face/original WIDER_val.zip
    
    cd ~/Downloads
    unzip -d /the/path/of/YOLOV5-Face/original retinaface_gt_v1.1.zip
    cd /the/path/of/YOLOV5-Face/original
    mv train/label.txt WIDER_train
    mv val/label.txt WIDER_val
    
    rm -rf train/ val/ test/
    
  3. 数据集格式转化

  • cd data
    python prepare_dataset.py
  • 数据集格式和Darknet Yolo相同,每张图片对应一个.txt标签。标签格式参考Darknet Yolo的数据集标签格式: "category cx, cy, w, h, x1,y1, x2, y2, x3, y3, x4, y4, x5, y5"。其中,category为下标类别(这里设为0), cx,cy为归一化的标签框中心点坐标, w,h为归一化标签框的宽高, x{1,2,3,4,5}/y{1,2,3,4,5}是指归一化的关键点坐标,.txt标签文件内容示例如下:

    0  0.50146484375 0.2964860907759883 0.0361328125 0.0746705710102489 0.4964423828125 0.2896354319180088 0.51370703125 0.2896354319180088 0.50680078125 0.2981068814055637 0.4986396484375 0.31363689604685213 0.51370703125 0.31269546120058567
    
    0  0.4150390625 0.3323572474377745 0.037109375 0.07027818448023426 -0.0009765625 -0.0014641288433382138 -0.0009765625 -0.0014641288433382138 -0.0009765625 -0.0014641288433382138 -0.0009765625 -0.0014641288433382138 -0.0009765625 -0.0014641288433382138
    
  • 图片与其对应的标签文件同名,存放在同一个目录下。数据文件结构如下:

    |---train
    |    |---0_Parade_marchingband_1_5.jpg
    |    |---0_Parade_marchingband_1_5.txt
    |    |---0_Parade_marchingband_1_6.jpg
    |    |---0_Parade_marchingband_1_6.txt
    |    |---0_Parade_marchingband_1_8.jpg
    |    |---0_Parade_marchingband_1_8.txt
    |---val
    |   |---0_Parade_marchingband_1_20.jpg
    |   |---0_Parade_marchingband_1_20.txt
    |   |---0_Parade_marchingband_1_74.jpg
    |   |---0_Parade_marchingband_1_74.txt
    
  • 注意下载的原始数据集格式是: "x1, y1, w, h"。其中, x1,y1是标签框左上角坐标, w,h是标签框的宽高,可通过代码验证:

    cd data
    python val_label_format.py
    • 红色框:假设标签格式:x1 y1 x2 y2
    • 绿色框:假设标签格式:center_x center_y w h
    • 蓝色框:假设标签格式:x1, y1, w,h(原始数据集格式)

About

detect face and landmarks based on yolov5

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages