Skip to content

TecSachinGupta/PyMinimalTemplate

Repository files navigation

Pydataengineertemplate

A comprehensive data engineering repository template supporting ETL, ML, and GenAI workflows.

Features

  • 🔄 ETL Pipelines: Data extraction, transformation, and loading
  • 🤖 Machine Learning: Model training and inference pipelines
  • 🧠 Generative AI: LLM integration, RAG systems, and AI agents
  • 📊 Analytics: Jupyter notebooks for exploration and reporting
  • 🛠 Development Tools: Testing, linting, and CI/CD ready
  • 📦 Modular Design: Extensible structure for any data project

Quick Start

1. Setup Environment

# Clone the repository
git clone <repository-url>
cd PyDataEngineerTemplate

# Create virtual environment
python -m venv venv
source venv/bin/activate  # On Windows: venv\Scripts\activate

# Install dependencies
pip install -r requirements.txt
pip install -r requirements-dev.txt

2. Development Setup

# Install pre-commit hooks
pre-commit install

# Run tests
make test

# Run linting
make lint

# See all available commands
make help

Project Structure

PyDataEngineerTemplate/
├── src/                    # Source code
│   ├── jobs/              # ETL/ML/GenAI jobs
│   ├── utilities/         # Reusable utilities
│   ├── configs/           # Configuration management
│   └── workflows/         # Orchestration (Airflow, etc.)
├── tests/                 # Test suite
├── assets/                # Data, schemas, and resources
├── docs/                  # Documentation
└── templates/             # Code templates

Usage Examples

Running a Sample ETL Job

python -m src.jobs.sample_etl_job

Starting Jupyter Lab

jupyter lab src/notebooks/

Running Tests

# All tests
pytest

# Unit tests only
pytest tests/unit/

# Integration tests only  
pytest tests/integration/

Extending the Structure

See STRUCTURE_GUIDE.md for detailed guidelines on extending this repository structure for your specific use cases.

Configuration

Copy .env.example to .env and update with your settings:

cp .env.example .env

Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Make your changes
  4. Run tests and linting
  5. Submit a pull request

License

This project is licensed under the MIT License - see the LICENSE file for details.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published