Skip to content
Merged
123 changes: 97 additions & 26 deletions math/gcd_of_n_numbers.cpp
Original file line number Diff line number Diff line change
@@ -1,41 +1,112 @@
/**
* @file
* @brief This program aims at calculating the GCD of n numbers by division
* method
* @brief This program aims at calculating the GCD of n numbers
*
* @details
* The GCD of n numbers can be calculated by
* repeatedly calculating the GCDs of pairs of numbers
* i.e. gcd(a, b, c) = gcd(gcd(a, b), c)
* Euclidean algorithm helps calculate the GCD of each pair of numbers efficiently
*
* @see gcd_iterative_euclidean.cpp, gcd_recursive_euclidean.cpp
*/
#include <iostream>
#include <iostream> /// for IO operations
#include <cassert> /// for assert
#include <algorithm> /// for std::abs

/** Compute GCD using division algorithm
*
* @param[in] a array of integers to compute GCD for
* @param[in] n number of integers in array `a`
/**
* @namespace math
* @brief Maths algorithms
*/
namespace math {
/**
* @namespace gcd_of_n_numbers
* @brief Compute GCD of numbers in an array
*/
namespace gcd_of_n_numbers {
/**
* @brief Function to compute GCD of 2 numbers x and y
* @param x First number
* @param y Second number
* @return GCD of x and y via recursion
*/
int gcd_two(int x, int y) {
// base cases
if (y == 0) return x;
if (x == 0) return y;
return gcd_two(y, x % y); // Euclidean method
}
/**
* @brief Function to check if all elements in array are 0
* @param a Array of numbers
* @param n Number of elements in array
* @return 'True' if all elements are 0
* @return 'False' if not all elements are 0
*/
bool check_all_zeros(int a[], size_t n) {
// Check for the undefined GCD cases
int zero_count = 0;
for (int i = 0; i < n; ++i) {
if (a[i] == 0) {
++zero_count;
}
}

// return whether all elements in array are 0
return zero_count == n;
}
/**
* @brief Main program to compute GCD using division algorithm
* @param a Array of integers to compute GCD for
* @param n number of integers in the array
* @return GCD of the numbers in the array
*/
int gcd(int *a, int n) {
int j = 1; // to access all elements of the array starting from 1
int gcd(int a[], size_t n) {
// GCD is undefined if all elements in the array are 0
if (check_all_zeros(a, n))
return -1; // since gcd is positive, use -1 to mark undefined gcd

int gcd = a[0];
while (j < n) {
if (a[j] % gcd == 0) // value of gcd is as needed so far
j++; // so we check for next element
else
gcd = a[j] % gcd; // calculating GCD by division method
for(int i = 1; i < n; i++) {
gcd = gcd_two(gcd, a[i]);
if (std::abs(gcd) == 1)
break; // if gcd is already 1, further computations still result in gcd of 1
}
return gcd;

return std::abs(gcd); // divisors can be negative, and we only want positive value
}
} // namespace gcd_of_n_numbers
} // namespace math

/** Main function */
int main() {
int n;
std::cout << "Enter value of n:" << std::endl;
std::cin >> n;
int *a = new int[n];
int i;
std::cout << "Enter the n numbers:" << std::endl;
for (i = 0; i < n; i++) std::cin >> a[i];
/**
* @brief Self-test implementation
* @return void
*/
static void test() {
int array_1[1] = {0};
int array_2[1] = {1};
int array_3[2] = {0, 2};
int array_4[3] = {-60, 24, 18};
int array_5[4] = {100, -100, -100, 200};
int array_6[5] = {0, 0, 0, 0, 0};
int array_7[7] = {90, -120, 0, 135, 660, -280, 900};
int array_8[7] = {90, -120, 0, 4000, 0, 0, 111};

std::cout << "GCD of entered n numbers:" << gcd(a, n) << std::endl;
assert(math::gcd_of_n_numbers::gcd(array_1, 1) == -1);
assert(math::gcd_of_n_numbers::gcd(array_2, 1) == 1);
assert(math::gcd_of_n_numbers::gcd(array_3, 2) == 2);
assert(math::gcd_of_n_numbers::gcd(array_4, 3) == 6);
assert(math::gcd_of_n_numbers::gcd(array_5, 4) == 100);
assert(math::gcd_of_n_numbers::gcd(array_6, 5) == -1);
assert(math::gcd_of_n_numbers::gcd(array_7, 7) == 5);
assert(math::gcd_of_n_numbers::gcd(array_8, 7) == 1);
}

delete[] a;
/**
* @brief Main function
* @return 0 on exit
*/
int main() {
test(); // run self-test implementation
return 0;
}
Loading