Skip to content
Merged
Show file tree
Hide file tree
Changes from 4 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions DIRECTORY.md
Original file line number Diff line number Diff line change
Expand Up @@ -811,6 +811,7 @@
* [HamiltonianCycleTest](https://github.com/TheAlgorithms/Java/blob/master/src/test/java/com/thealgorithms/datastructures/graphs/HamiltonianCycleTest.java)
* [JohnsonsAlgorithmTest](https://github.com/TheAlgorithms/Java/blob/master/src/test/java/com/thealgorithms/datastructures/graphs/JohnsonsAlgorithmTest.java)
* [KosarajuTest](https://github.com/TheAlgorithms/Java/blob/master/src/test/java/com/thealgorithms/datastructures/graphs/KosarajuTest.java)
* [PrimMSTTest](https://github.com/TheAlgorithms/Java/blob/master/src/test/java/com/thealgorithms/datastructures/graphs/PrimMSTTest.java)
* [TarjansAlgorithmTest](https://github.com/TheAlgorithms/Java/blob/master/src/test/java/com/thealgorithms/datastructures/graphs/TarjansAlgorithmTest.java)
* [WelshPowellTest](https://github.com/TheAlgorithms/Java/blob/master/src/test/java/com/thealgorithms/datastructures/graphs/WelshPowellTest.java)
* hashmap
Expand Down
Original file line number Diff line number Diff line change
@@ -1,19 +1,17 @@
package com.thealgorithms.datastructures.graphs;

/**
* A Java program for Prim's Minimum Spanning Tree (MST) algorithm. adjacency
* matrix representation of the graph
* A Java program for Prim's Minimum Spanning Tree (MST) algorithm.
* Adjacency matrix representation of the graph.
*/
class PrimMST {
public class PrimMST {

// Number of vertices in the graph

private static final int V = 5;

// A utility function to find the vertex with minimum key
// value, from the set of vertices not yet included in MST
// A utility function to find the vertex with the minimum key
// value, from the set of vertices not yet included in the MST
int minKey(int[] key, Boolean[] mstSet) {
// Initialize min value
int min = Integer.MAX_VALUE;
int minIndex = -1;

Expand All @@ -27,84 +25,37 @@ int minKey(int[] key, Boolean[] mstSet) {
return minIndex;
}

// A utility function to print the constructed MST stored in
// parent[]
void printMST(int[] parent, int n, int[][] graph) {
System.out.println("Edge Weight");
for (int i = 1; i < V; i++) {
System.out.println(parent[i] + " - " + i + " " + graph[i][parent[i]]);
}
}

// Function to construct and print MST for a graph represented
// using adjacency matrix representation
void primMST(int[][] graph) {
// Array to store constructed MST
int[] parent = new int[V];

// Key values used to pick minimum weight edge in cut
int[] key = new int[V];
// Function to construct MST for a graph using adjacency matrix representation
public int[] primMST(int[][] graph) {
int[] parent = new int[V]; // Array to store constructed MST
int[] key = new int[V]; // Key values to pick minimum weight edge
Boolean[] mstSet = new Boolean[V]; // Vertices not yet included in MST

// To represent set of vertices not yet included in MST
Boolean[] mstSet = new Boolean[V];

// Initialize all keys as INFINITE
// Initialize all keys as INFINITE and mstSet[] as false
for (int i = 0; i < V; i++) {
key[i] = Integer.MAX_VALUE;
mstSet[i] = Boolean.FALSE;
}

// Always include first 1st vertex in MST.
key[0] = 0; // Make key 0 so that this vertex is
// picked as first vertex
// Always include the first vertex in MST
key[0] = 0; // Make key 0 to pick the first vertex
parent[0] = -1; // First node is always root of MST

// The MST will have V vertices
for (int count = 0; count < V - 1; count++) {
// Pick thd minimum key vertex from the set of vertices
// not yet included in MST
// Pick the minimum key vertex not yet included in MST
int u = minKey(key, mstSet);

// Add the picked vertex to the MST Set
mstSet[u] = Boolean.TRUE;

// Update key value and parent index of the adjacent
// vertices of the picked vertex. Consider only those
// vertices which are not yet included in MST
for (int v = 0; v < V; v++) // Update the key only if graph[u][v] is smaller than key[v] // mstSet[v] is
// false for vertices not yet included in MST // graph[u][v] is non zero only
// for adjacent vertices of m
{
// Update key value and parent index of adjacent vertices of the picked vertex
for (int v = 0; v < V; v++) {
if (graph[u][v] != 0 && !mstSet[v] && graph[u][v] < key[v]) {
parent[v] = u;
key[v] = graph[u][v];
}
}
}

// print the constructed MST
printMST(parent, V, graph);
}

public static void main(String[] args) {
/* Let us create the following graph
2 3
(0)--(1)--(2)
| / \ |
6| 8/ \5 |7
| / \ |
(3)-------(4)
9 */
PrimMST t = new PrimMST();
int[][] graph = new int[][] {
{0, 2, 0, 6, 0},
{2, 0, 3, 8, 5},
{0, 3, 0, 0, 7},
{6, 8, 0, 0, 9},
{0, 5, 7, 9, 0},
};

// Print the solution
t.primMST(graph);
return parent; // Return the MST parent array
}
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,54 @@
package com.thealgorithms.datastructures.graphs;

import static org.junit.jupiter.api.Assertions.assertArrayEquals;

import org.junit.jupiter.api.Test;

public class PrimMSTTest {

private final PrimMST primMST = new PrimMST();

@Test
public void testSimpleGraph() {
// Test graph with 5 nodes and weighted edges
int[][] graph = {{0, 2, 0, 6, 0}, {2, 0, 3, 8, 5}, {0, 3, 0, 0, 7}, {6, 8, 0, 0, 9}, {0, 5, 7, 9, 0}};

int[] expectedParent = {-1, 0, 1, 0, 1};
int[] actualParent = primMST.primMST(graph);

assertArrayEquals(expectedParent, actualParent);
}

@Test
public void testDisconnectedGraph() {
// Test case with a disconnected graph (no valid MST)
int[][] graph = {{0, 1, 0, 0, 0}, {1, 0, 2, 0, 0}, {0, 2, 0, 3, 0}, {0, 0, 3, 0, 4}, {0, 0, 0, 4, 0}};

int[] expectedParent = {-1, 0, 1, 2, 3}; // Expected MST parent array
int[] actualParent = primMST.primMST(graph);

assertArrayEquals(expectedParent, actualParent);
}

@Test
public void testAllEqualWeightsGraph() {
// Test case where all edges have equal weight
int[][] graph = {{0, 1, 1, 1, 1}, {1, 0, 1, 1, 1}, {1, 1, 0, 1, 1}, {1, 1, 1, 0, 1}, {1, 1, 1, 1, 0}};

int[] expectedParent = {-1, 0, 0, 0, 0}; // Expected MST parent array (any valid spanning tree)
int[] actualParent = primMST.primMST(graph);

assertArrayEquals(expectedParent, actualParent);
}

@Test
public void testSparseGraph() {
// Test case with a sparse graph (few edges)
int[][] graph = {{0, 1, 0, 0, 0}, {1, 0, 1, 0, 0}, {0, 1, 0, 1, 0}, {0, 0, 1, 0, 1}, {0, 0, 0, 1, 0}};

int[] expectedParent = {-1, 0, 1, 2, 3}; // Expected MST parent array
int[] actualParent = primMST.primMST(graph);

assertArrayEquals(expectedParent, actualParent);
}
}