Skip to content
Merged
1 change: 1 addition & 0 deletions DIRECTORY.md
Original file line number Diff line number Diff line change
Expand Up @@ -835,6 +835,7 @@
* [FibonacciHeapTest](https://github.com/TheAlgorithms/Java/blob/master/src/test/java/com/thealgorithms/datastructures/heaps/FibonacciHeapTest.java)
* [GenericHeapTest](https://github.com/TheAlgorithms/Java/blob/master/src/test/java/com/thealgorithms/datastructures/heaps/GenericHeapTest.java)
* [LeftistHeapTest](https://github.com/TheAlgorithms/Java/blob/master/src/test/java/com/thealgorithms/datastructures/heaps/LeftistHeapTest.java)
* [MinHeapTest](https://github.com/TheAlgorithms/Java/blob/master/src/test/java/com/thealgorithms/datastructures/heaps/MinHeapTest.java)
* [MinPriorityQueueTest](https://github.com/TheAlgorithms/Java/blob/master/src/test/java/com/thealgorithms/datastructures/heaps/MinPriorityQueueTest.java)
* lists
* [CircleLinkedListTest](https://github.com/TheAlgorithms/Java/blob/master/src/test/java/com/thealgorithms/datastructures/lists/CircleLinkedListTest.java)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -40,5 +40,5 @@ public interface Heap {
* @param elementIndex int containing the position in the heap of the
* element to be deleted.
*/
void deleteElement(int elementIndex);
void deleteElement(int elementIndex) throws EmptyHeapException;
}
Original file line number Diff line number Diff line change
Expand Up @@ -111,7 +111,7 @@ public String toString() {
}

/**
* @param otherHeapElement
* @param o
* @return true if the keys on both elements are identical and the
* additional info objects are identical.
*/
Expand All @@ -134,4 +134,8 @@ public int hashCode() {
result = 31 * result + (additionalInfo != null ? additionalInfo.hashCode() : 0);
return result;
}

public String getValue() {
return additionalInfo.toString();
}
}
248 changes: 197 additions & 51 deletions src/main/java/com/thealgorithms/datastructures/heaps/MinHeap.java
Original file line number Diff line number Diff line change
Expand Up @@ -4,122 +4,268 @@
import java.util.List;

/**
* Heap tree where a node's key is higher than or equal to its parent's and
* lower than or equal to its children's.
* A Min Heap implementation where each node's key is lower than or equal to its children's keys.
* This data structure provides O(log n) time complexity for insertion and deletion operations,
* and O(1) for retrieving the minimum element.
*
* Properties:
* 1. Complete Binary Tree
* 2. Parent node's key ≤ Children nodes' keys
* 3. Root contains the minimum element
*
* Example usage:
* ```java
* List<HeapElement> elements = Arrays.asList(
* new HeapElement(5, "Five"),
* new HeapElement(2, "Two")
* );
* MinHeap heap = new MinHeap(elements);
* heap.insertElement(new HeapElement(1, "One"));
* HeapElement min = heap.getElement(); // Returns and removes the minimum element
* ```
*
* @author Nicolas Renard
*/
public class MinHeap implements Heap {

private final List<HeapElement> minHeap;

/**
* Constructs a new MinHeap from a list of elements.
* Null elements in the input list are ignored with a warning message.
*
* @param listElements List of HeapElement objects to initialize the heap
* @throws IllegalArgumentException if the input list is null
*/
public MinHeap(List<HeapElement> listElements) {
if (listElements == null) {
throw new IllegalArgumentException("Input list cannot be null");
}

minHeap = new ArrayList<>();

// Safe initialization: directly add elements first
for (HeapElement heapElement : listElements) {
if (heapElement != null) {
insertElement(heapElement);
minHeap.add(heapElement);
} else {
System.out.println("Null element. Not added to heap");
}
}

// Heapify the array bottom-up
for (int i = minHeap.size() / 2; i >= 0; i--) {
heapifyDown(i + 1);
}

if (minHeap.isEmpty()) {
System.out.println("No element has been added, empty heap.");
}
}

// Get the element at a given index. The key for the list is equal to index value - 1
/**
* Retrieves the element at the specified index without removing it.
* Note: The index is 1-based for consistency with heap operations.
*
* @param elementIndex 1-based index of the element to retrieve
* @return HeapElement at the specified index
* @throws IndexOutOfBoundsException if the index is invalid
*/
public HeapElement getElement(int elementIndex) {
if ((elementIndex <= 0) || (elementIndex > minHeap.size())) {
throw new IndexOutOfBoundsException("Index out of heap range");
throw new IndexOutOfBoundsException("Index " + elementIndex + " is out of heap range [1, " + minHeap.size() + "]");
}
return minHeap.get(elementIndex - 1);
}

// Get the key of the element at a given index
/**
* Retrieves the key value of an element at the specified index.
*
* @param elementIndex 1-based index of the element
* @return double value representing the key
* @throws IndexOutOfBoundsException if the index is invalid
*/
private double getElementKey(int elementIndex) {
if ((elementIndex <= 0) || (elementIndex > minHeap.size())) {
throw new IndexOutOfBoundsException("Index out of heap range");
throw new IndexOutOfBoundsException("Index " + elementIndex + " is out of heap range [1, " + minHeap.size() + "]");
}

return minHeap.get(elementIndex - 1).getKey();
}

// Swaps two elements in the heap
/**
* Swaps two elements in the heap.
*
* @param index1 1-based index of first element
* @param index2 1-based index of second element
*/
private void swap(int index1, int index2) {
HeapElement temporaryElement = minHeap.get(index1 - 1);
minHeap.set(index1 - 1, minHeap.get(index2 - 1));
minHeap.set(index2 - 1, temporaryElement);
}

// Toggle an element up to its right place as long as its key is lower than its parent's
/**
* Maintains heap properties by moving an element down the heap.
* Used specifically during initialization.
*
* @param elementIndex 1-based index of the element to heapify
*/
private void heapifyDown(int elementIndex) {
int smallest = elementIndex - 1; // Convert to 0-based index
int leftChild = 2 * elementIndex - 1;
int rightChild = 2 * elementIndex;

// Check if left child is smaller than root
if (leftChild < minHeap.size() && minHeap.get(leftChild).getKey() < minHeap.get(smallest).getKey()) {
smallest = leftChild;
}

// Check if right child is smaller than smallest so far
if (rightChild < minHeap.size() && minHeap.get(rightChild).getKey() < minHeap.get(smallest).getKey()) {
smallest = rightChild;
}

// If smallest is not root
if (smallest != elementIndex - 1) {
HeapElement swap = minHeap.get(elementIndex - 1);
minHeap.set(elementIndex - 1, minHeap.get(smallest));
minHeap.set(smallest, swap);

// Recursively heapify the affected sub-tree
heapifyDown(smallest + 1); // Convert back to 1-based index
}
}

/**
* Moves an element up the heap until heap properties are satisfied.
* This operation is called after insertion to maintain heap properties.
*
* @param elementIndex 1-based index of the element to move up
*/
private void toggleUp(int elementIndex) {
if (elementIndex <= 1) {
return;
}

double key = minHeap.get(elementIndex - 1).getKey();
while (getElementKey((int) Math.floor(elementIndex / 2.0) + 1) > key) {
swap(elementIndex, (int) Math.floor(elementIndex / 2.0));
elementIndex = (int) Math.floor(elementIndex / 2.0);
int parentIndex = (int) Math.floor(elementIndex / 2.0);

while (elementIndex > 1 && getElementKey(parentIndex) > key) {
swap(elementIndex, parentIndex);
elementIndex = parentIndex;
parentIndex = (int) Math.floor(elementIndex / 2.0);
}
}

// Toggle an element down to its right place as long as its key is higher
// than any of its children's
/**
* Moves an element down the heap until heap properties are satisfied.
* This operation is called after deletion to maintain heap properties.
*
* @param elementIndex 1-based index of the element to move down
*/
private void toggleDown(int elementIndex) {
double key = minHeap.get(elementIndex - 1).getKey();
boolean wrongOrder = (key > getElementKey(elementIndex * 2)) || (key > getElementKey(Math.min(elementIndex * 2, minHeap.size())));
while ((2 * elementIndex <= minHeap.size()) && wrongOrder) {
// Check whether it shall swap the element with its left child or its right one if any.
if ((2 * elementIndex < minHeap.size()) && (getElementKey(elementIndex * 2 + 1) < getElementKey(elementIndex * 2))) {
swap(elementIndex, 2 * elementIndex + 1);
elementIndex = 2 * elementIndex + 1;
} else {
swap(elementIndex, 2 * elementIndex);
elementIndex = 2 * elementIndex;
int size = minHeap.size();

while (true) {
int smallest = elementIndex;
int leftChild = 2 * elementIndex;
int rightChild = 2 * elementIndex + 1;

if (leftChild <= size && getElementKey(leftChild) < key) {
smallest = leftChild;
}

if (rightChild <= size && getElementKey(rightChild) < getElementKey(smallest)) {
smallest = rightChild;
}

if (smallest == elementIndex) {
break;
}
wrongOrder = (key > getElementKey(elementIndex * 2)) || (key > getElementKey(Math.min(elementIndex * 2, minHeap.size())));

swap(elementIndex, smallest);
elementIndex = smallest;
}
}

private HeapElement extractMin() {
HeapElement result = minHeap.get(0);
deleteElement(0);
/**
* Extracts and returns the minimum element from the heap.
*
* @return HeapElement with the lowest key
* @throws EmptyHeapException if the heap is empty
*/
private HeapElement extractMin() throws EmptyHeapException {
if (minHeap.isEmpty()) {
throw new EmptyHeapException("Cannot extract from empty heap");
}
HeapElement result = minHeap.getFirst();
deleteElement(1);
return result;
}

/**
* {@inheritDoc}
*/
@Override
public final void insertElement(HeapElement element) {
public void insertElement(HeapElement element) {
if (element == null) {
throw new IllegalArgumentException("Cannot insert null element");
}
minHeap.add(element);
toggleUp(minHeap.size());
}

/**
* {@inheritDoc}
*/
@Override
public void deleteElement(int elementIndex) {
public void deleteElement(int elementIndex) throws EmptyHeapException {
if (minHeap.isEmpty()) {
try {
throw new EmptyHeapException("Attempt to delete an element from an empty heap");
} catch (EmptyHeapException e) {
e.printStackTrace();
}
throw new EmptyHeapException("Cannot delete from empty heap");
}
if ((elementIndex > minHeap.size()) || (elementIndex <= 0)) {
throw new IndexOutOfBoundsException("Index out of heap range");
}
// The last element in heap replaces the one to be deleted
minHeap.set(elementIndex - 1, getElement(minHeap.size()));
minHeap.remove(minHeap.size());
// Shall the new element be moved up...
if (getElementKey(elementIndex) < getElementKey((int) Math.floor(elementIndex / 2.0))) {
toggleUp(elementIndex);
} // ... or down ?
else if (((2 * elementIndex <= minHeap.size()) && (getElementKey(elementIndex) > getElementKey(elementIndex * 2))) || ((2 * elementIndex < minHeap.size()) && (getElementKey(elementIndex) > getElementKey(elementIndex * 2)))) {
toggleDown(elementIndex);
throw new IndexOutOfBoundsException("Index " + elementIndex + " is out of heap range [1, " + minHeap.size() + "]");
}

// Replace with last element and remove last position
minHeap.set(elementIndex - 1, minHeap.getLast());
minHeap.removeLast();

// No need to toggle if we just removed the last element
if (!minHeap.isEmpty() && elementIndex <= minHeap.size()) {
// Determine whether to toggle up or down
if (elementIndex > 1 && getElementKey(elementIndex) < getElementKey((int) Math.floor(elementIndex / 2.0))) {
toggleUp(elementIndex);
} else {
toggleDown(elementIndex);
}
}
}

/**
* {@inheritDoc}
*/
@Override
public HeapElement getElement() throws EmptyHeapException {
try {
return extractMin();
} catch (Exception e) {
throw new EmptyHeapException("Heap is empty. Error retrieving element", e);
}
return extractMin();
}

/**
* Returns the current size of the heap.
*
* @return number of elements in the heap
*/
public int size() {
return minHeap.size();
}

/**
* Checks if the heap is empty.
*
* @return true if the heap contains no elements
*/
public boolean isEmpty() {
return minHeap.isEmpty();
}
}
Loading