Skip to content
Merged
Changes from 2 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
@@ -0,0 +1,63 @@
package com.thealgorithms.randomized;

import java.util.Random;
import java.util.ArrayList;
import java.util.List;

/**
* Reservoir Sampling Algorithm
*
* Use Case:
* - Efficient for selecting k random items from a stream of unknown size
* - Used in streaming systems, big data, and memory-limited environments
*
* Time Complexity: O(n)
* Space Complexity: O(k)
*
* Author: Michael Alexander Montoya (@cureprotocols)
*/
public class ReservoirSampling {

/**
* Selects k random elements from a stream using reservoir sampling.
*
* @param stream The input stream as an array of integers.
* @param sampleSize The number of elements to sample.
* @return A list containing k randomly selected elements.
*/
public static List<Integer> sample(int[] stream, int sampleSize) {
if (sampleSize > stream.length) {
throw new IllegalArgumentException("Sample size cannot exceed stream size.");
}

List<Integer> reservoir = new ArrayList<>(sampleSize);
Random rand = new Random();

for (int i = 0; i < stream.length; i++) {
if (i < sampleSize) {
reservoir.add(stream[i]);
} else {
int j = rand.nextInt(i + 1);
if (j < sampleSize) {
reservoir.set(j, stream[i]);
}
}
}

return reservoir;
}

// Demo usage
public static void main(String[] args) {
int[] streamData = new int[1000];
for (int i = 0; i < 1000; i++) {
streamData[i] = i + 1;
}

List<Integer> result = ReservoirSampling.sample(streamData, 10);
System.out.println("Random sample of 10 items:");
for (int value : result) {
System.out.print(value + " ");
}
}
}
Loading