Skip to content
68 changes: 28 additions & 40 deletions src/main/java/com/thealgorithms/searches/JumpSearch.java
Original file line number Diff line number Diff line change
@@ -1,56 +1,44 @@
package com.thealgorithms.searches;

import com.thealgorithms.devutils.searches.SearchAlgorithm;

/**
* An implementation of the Jump Search algorithm.
*
* <p>
* Jump Search is an algorithm for searching sorted arrays. It works by dividing the array
* into blocks of a fixed size (the block size is typically the square root of the array length)
* and jumping ahead by this block size to find a range where the target element may be located.
* Once the range is found, a linear search is performed within that block.
*
* <p>
* The Jump Search algorithm is particularly effective for large sorted arrays where the cost of
* performing a linear search on the entire array would be prohibitive.
* Implementation of Jump Search algorithm.
*
* <p>
* Worst-case performance: O(√N)<br>
* Best-case performance: O(1)<br>
* Average performance: O(√N)<br>
* Worst-case space complexity: O(1)
* Time Complexity: O(√n)
* Space Complexity: O(1)
*
* <p>
* This class implements the {@link SearchAlgorithm} interface, providing a generic search method
* for any comparable type.
* Reference: https://en.wikipedia.org/wiki/Jump_search
*/
public class JumpSearch implements SearchAlgorithm {
public final class JumpSearch {

// Prevent instantiation
private JumpSearch() {
throw new UnsupportedOperationException("Utility class");
}

/**
* Jump Search algorithm implementation.
*
* @param array the sorted array containing elements
* @param key the element to be searched
* @return the index of {@code key} if found, otherwise -1
*/
@Override
public <T extends Comparable<T>> int find(T[] array, T key) {
int length = array.length;
int blockSize = (int) Math.sqrt(length);
public static int jumpSearch(int[] arr, int target) {
int n = arr.length;
int step = (int) Math.floor(Math.sqrt(n));
int prev = 0;

int limit = blockSize;
// Jumping ahead to find the block where the key may be located
while (limit < length && key.compareTo(array[limit]) > 0) {
limit = Math.min(limit + blockSize, length - 1);
while (prev < n && arr[Math.min(step, n) - 1] < target) {
prev = step;
step += (int) Math.floor(Math.sqrt(n));
}

// Perform linear search within the identified block
for (int i = limit - blockSize; i <= limit && i < length; i++) {
if (array[i].equals(key)) {
for (int i = prev; i < Math.min(step, n); i++) {
if (arr[i] == target) {
return i;
}
}

return -1;
}

public static int find(Integer[] arr, Integer target) {
int[] array = new int[arr.length];
for (int i = 0; i < arr.length; i++) {
array[i] = arr[i];
}
return jumpSearch(array, target);
}
}
65 changes: 17 additions & 48 deletions src/test/java/com/thealgorithms/searches/JumpSearchTest.java
Original file line number Diff line number Diff line change
Expand Up @@ -4,91 +4,60 @@

import org.junit.jupiter.api.Test;

/**
* Unit tests for the JumpSearch class.
*/
class JumpSearchTest {

/**
* Test for finding an element present in the array.
*/
@Test
void testJumpSearchFound() {
JumpSearch jumpSearch = new JumpSearch();
Integer[] array = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
Integer key = 5; // Element to find
assertEquals(5, jumpSearch.find(array, key), "The index of the found element should be 5.");
Integer key = 5;
assertEquals(5, JumpSearch.find(array, key));
}

/**
* Test for finding the first element in the array.
*/
@Test
void testJumpSearchFirstElement() {
JumpSearch jumpSearch = new JumpSearch();
Integer[] array = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
Integer key = 0; // First element
assertEquals(0, jumpSearch.find(array, key), "The index of the first element should be 0.");
Integer key = 0;
assertEquals(0, JumpSearch.find(array, key));
}

/**
* Test for finding the last element in the array.
*/
@Test
void testJumpSearchLastElement() {
JumpSearch jumpSearch = new JumpSearch();
Integer[] array = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
Integer key = 10; // Last element
assertEquals(10, jumpSearch.find(array, key), "The index of the last element should be 10.");
Integer key = 10;
assertEquals(10, JumpSearch.find(array, key));
}

/**
* Test for finding an element not present in the array.
*/
@Test
void testJumpSearchNotFound() {
JumpSearch jumpSearch = new JumpSearch();
Integer[] array = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
Integer key = -1; // Element not in the array
assertEquals(-1, jumpSearch.find(array, key), "The element should not be found in the array.");
Integer key = -1;
assertEquals(-1, JumpSearch.find(array, key));
}

/**
* Test for finding an element in an empty array.
*/
@Test
void testJumpSearchEmptyArray() {
JumpSearch jumpSearch = new JumpSearch();
Integer[] array = {}; // Empty array
Integer key = 1; // Key not present
assertEquals(-1, jumpSearch.find(array, key), "The element should not be found in an empty array.");
Integer[] array = {};
Integer key = 1;
assertEquals(-1, JumpSearch.find(array, key));
}

/**
* Test for finding an element in a large array.
*/
@Test
void testJumpSearchLargeArray() {
JumpSearch jumpSearch = new JumpSearch();
Integer[] array = new Integer[1000];
for (int i = 0; i < array.length; i++) {
array[i] = i * 2; // Fill the array with even numbers
array[i] = i * 2;
}
Integer key = 256; // Present in the array
assertEquals(128, jumpSearch.find(array, key), "The index of the found element should be 128.");
Integer key = 256;
assertEquals(128, JumpSearch.find(array, key));
}

/**
* Test for finding an element in a large array when it is not present.
*/
@Test
void testJumpSearchLargeArrayNotFound() {
JumpSearch jumpSearch = new JumpSearch();
Integer[] array = new Integer[1000];
for (int i = 0; i < array.length; i++) {
array[i] = i * 2; // Fill the array with even numbers
array[i] = i * 2;
}
Integer key = 999; // Key not present
assertEquals(-1, jumpSearch.find(array, key), "The element should not be found in the array.");
Integer key = 999;
assertEquals(-1, JumpSearch.find(array, key));
}
}
Loading