Skip to content
88 changes: 88 additions & 0 deletions src/main/java/com/thealgorithms/matrix/LUDecomposition.java
Original file line number Diff line number Diff line change
@@ -0,0 +1,88 @@
package com.thealgorithms.matrix;

/**
* LU Decomposition algorithm
* --------------------------
* Decomposes a square matrix a into a product of two matrices:
* a = l * u
* where:
* - l is a lower triangular matrix with 1s on its diagonal
* - u is an upper triangular matrix
*
* Reference:
* https://en.wikipedia.org/wiki/lu_decomposition
*/
public final class LUDecomposition {

private LUDecomposition() {
}

/**
* A helper class to store both l and u matrices
*/
public static class LU {
double[][] l;
double[][] u;

LU(double[][] l, double[][] u) {
this.l = l;
this.u = u;
}
}

/**
* Performs LU Decomposition on a square matrix a
*
* @param a input square matrix
* @return LU object containing l and u matrices
*/
public static LU decompose(double[][] a) {
int n = a.length;
double[][] l = new double[n][n];
double[][] u = new double[n][n];

for (int i = 0; i < n; i++) {
// upper triangular matrix
for (int k = i; k < n; k++) {
double sum = 0;
for (int j = 0; j < i; j++) {
sum += l[i][j] * u[j][k];
}
u[i][k] = a[i][k] - sum;
}

// lower triangular matrix
for (int k = i; k < n; k++) {
if (i == k) {
l[i][i] = 1; // diagonal as 1
} else {
double sum = 0;
for (int j = 0; j < i; j++) {
sum += l[k][j] * u[j][i];
}
l[k][i] = (a[k][i] - sum) / u[i][i];
}
}
}

return new LU(l, u);
}

/**
* Utility function to print a matrix
*
* @param m matrix to print
*/
public static void printMatrix(double[][] m) {
for (double[] row : m) {
System.out.print("[");
for (int j = 0; j < row.length; j++) {
System.out.printf("%7.3f", row[j]);
if (j < row.length - 1) {
System.out.print(", ");
}
}
System.out.println("]");
}
}
}
40 changes: 40 additions & 0 deletions src/test/java/com/thealgorithms/matrix/LUDecompositionTest.java
Original file line number Diff line number Diff line change
@@ -0,0 +1,40 @@
package com.thealgorithms.matrix;

import static org.junit.jupiter.api.Assertions.assertArrayEquals;

import org.junit.jupiter.api.Test;

public class LUDecompositionTest {

@Test
public void testLUDecomposition() {
double[][] a = {{4, 3}, {6, 3}};

// Perform LU decomposition
LUDecomposition.LU lu = LUDecomposition.decompose(a);
double[][] l = lu.l;
double[][] u = lu.u;

// Reconstruct a from l and u
double[][] reconstructed = multiplyMatrices(l, u);

// Assert that reconstructed matrix matches original a
for (int i = 0; i < a.length; i++) {
assertArrayEquals(a[i], reconstructed[i], 1e-9);
}
}

// Helper method to multiply two matrices
private double[][] multiplyMatrices(double[][] a, double[][] b) {
int n = a.length;
double[][] c = new double[n][n];
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
for (int k = 0; k < n; k++) {
c[i][j] += a[i][k] * b[k][j];
}
}
}
return c;
}
}