Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
88 changes: 88 additions & 0 deletions Graphs/JohnsonsAlgorithm.js
Original file line number Diff line number Diff line change
@@ -0,0 +1,88 @@
/**
* Johnson's Algorithm for All-Pairs Shortest Paths
* Reference: https://en.wikipedia.org/wiki/Johnson%27s_algorithm
*/

// Helper: Bellman-Ford algorithm
function bellmanFord(graph, source) {
const dist = Array(graph.length).fill(Infinity)
dist[source] = 0
for (let i = 0; i < graph.length - 1; i++) {
for (let u = 0; u < graph.length; u++) {
for (const [v, w] of graph[u]) {
if (dist[u] + w < dist[v]) {
dist[v] = dist[u] + w
}
}
}
}
// Check for negative-weight cycles
for (let u = 0; u < graph.length; u++) {
for (const [v, w] of graph[u]) {
if (dist[u] + w < dist[v]) {
throw new Error('Graph contains a negative-weight cycle')
}
}
}
return dist
}

// Helper: Dijkstra's algorithm
function dijkstra(graph, source) {
const dist = Array(graph.length).fill(Infinity)
dist[source] = 0
const visited = Array(graph.length).fill(false)
for (let i = 0; i < graph.length; i++) {
let u = -1
for (let j = 0; j < graph.length; j++) {
if (!visited[j] && (u === -1 || dist[j] < dist[u])) {
u = j
}
}
if (dist[u] === Infinity) break
visited[u] = true
for (const [v, w] of graph[u]) {
if (dist[u] + w < dist[v]) {
dist[v] = dist[u] + w
}
}
}
return dist
}

export function johnsonsAlgorithm(graph) {
const n = graph.length

const newGraph = graph.map((edges) => [...edges])
newGraph.push([])
for (let v = 0; v < n; v++) {
newGraph[newGraph.length - 1].push([v, 0])
}
// Step 1: Run Bellman-Ford from new vertex
const h = bellmanFord(newGraph, n)
// Step 2: Reweight all edges
const reweighted = []
for (let u = 0; u < n; u++) {
reweighted[u] = []
for (const [v, w] of graph[u]) {
reweighted[u].push([v, w + h[u] - h[v]])
}
}
// Step 3: Run Dijkstra from each vertex
const result = []
for (let u = 0; u < n; u++) {
const d = dijkstra(reweighted, u)
result[u] = d.map((dist, v) => dist + h[v] - h[u])
}
return result
}

// Example usage:
// const graph = [
// [[1, 3], [2, 8], [4, -4]],
// [[3, 1], [4, 7]],
// [[1, 4]],
// [[0, 2], [2, -5]],
// [[3, 6]]
// ]
// console.log(johnsonsAlgorithm(graph))
4 changes: 2 additions & 2 deletions Maths/MobiusFunction.js
Original file line number Diff line number Diff line change
Expand Up @@ -28,6 +28,6 @@ export const mobiusFunction = (number) => {
return primeFactorsArray.length !== new Set(primeFactorsArray).size
? 0
: primeFactorsArray.length % 2 === 0
? 1
: -1
? 1
: -1
}
36 changes: 36 additions & 0 deletions Maths/PollardsRho.js
Original file line number Diff line number Diff line change
@@ -0,0 +1,36 @@
/**
* Pollard’s Rho Algorithm for Integer Factorization
*
* Pollard’s Rho is a probabilistic algorithm for integer factorization, especially effective for large composite numbers.
* Reference: https://en.wikipedia.org/wiki/Pollard%27s_rho_algorithm
*/

function gcd(a, b) {
while (b !== 0) {
;[a, b] = [b, a % b]
}
return a
}

/**
* Returns a non-trivial factor of n, or n if n is prime
* @param {number} n - Integer to factor
* @returns {number} - A non-trivial factor of n
*/
export function pollardsRho(n) {
if (n % 2 === 0) return 2
let x = 2,
y = 2,
d = 1,
f = (v) => (v * v + 1) % n
while (d === 1) {
x = f(x)
y = f(f(y))
d = gcd(Math.abs(x - y), n)
}
return d === n ? n : d
}

// Example usage:
// const n = 8051;
// console.log(pollardsRho(n)); // Output: a non-trivial factor of 8051
Loading