@@ -68,7 +68,7 @@ def fit(self, features: np.ndarray, target: np.ndarray) -> None:
6868 m , n = features_scaled .shape
6969 self .theta = np .zeros (n ) # Initialize weights to zeros
7070
71- for i in range (self .iterations ):
71+ for _ in range (self .iterations ):
7272 predictions = features_scaled .dot (self .theta )
7373 error = predictions - target
7474
@@ -149,21 +149,21 @@ def mean_absolute_error(self, y_true: np.ndarray, y_pred: np.ndarray) -> float:
149149 data = pd .read_csv (
150150 "https://raw.githubusercontent.com/yashLadha/The_Math_of_Intelligence/master/Week1/ADRvsRating.csv"
151151 )
152- x = data [["Rating" ]].to_numpy () # Feature: Rating
153- y = data ["ADR" ].to_numpy () # Target: ADR
154- y = (y - np .mean (y )) / np .std (y )
152+ data_x = data [["Rating" ]].to_numpy () # Feature: Rating
153+ data_y = data ["ADR" ].to_numpy () # Target: ADR
154+ data_y = (data_y - np .mean (data_y )) / np .std (data_y )
155155
156156 # Add bias term (intercept) to the feature matrix
157- x = np .c_ [np .ones (X .shape [0 ]), x ] # Add intercept term
157+ data_x = np .c_ [np .ones (data_x .shape [0 ]), data_x ] # Add intercept term
158158
159159 # Initialize and train the Ridge Regression model
160160 model = RidgeRegression (alpha = 0.01 , lambda_ = 0.1 , iterations = 1000 )
161- model .fit (x , y )
161+ model .fit (data_x , data_y )
162162
163163 # Predictions
164- predictions = model .predict (x )
164+ predictions = model .predict (data_x )
165165
166166 # Results
167167 print ("Optimized Weights:" , model .theta )
168- print ("Cost:" , model .compute_cost (x , y ))
169- print ("Mean Absolute Error:" , model .mean_absolute_error (y , predictions ))
168+ print ("Cost:" , model .compute_cost (data_x , data_y ))
169+ print ("Mean Absolute Error:" , model .mean_absolute_error (data_y , predictions ))
0 commit comments