Skip to content
Closed
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
27 changes: 25 additions & 2 deletions machine_learning/linear_regression.py
Original file line number Diff line number Diff line change
Expand Up @@ -40,7 +40,16 @@ def run_steep_gradient_descent(data_x, data_y, len_data, alpha, theta):
:param alpha : Learning rate of the model
:param theta : Feature vector (weight's for our model)
;param return : Updated Feature's, using
curr_features - alpha_ * gradient(w.r.t. feature)
curr_features - alpha_ * gradient(w.r.t. feature)

>>> data_x = np.array([[1, 2], [1, 3], [1, 4]])
>>> data_y = np.array([[2], [2], [2]])
>>> theta = np.array([[0.0, 0.0]])
>>> alpha = 0.01
>>> len_data = len(data_x)
>>> new_theta = run_steep_gradient_descent(data_x, data_y, len_data, alpha, theta)
>>> new_theta.round(2)
array([[0.02, 0.06]])
"""
n = len_data

Expand All @@ -58,6 +67,13 @@ def sum_of_square_error(data_x, data_y, len_data, theta):
:param len_data : len of the dataset
:param theta : contains the feature vector
:return : sum of square error computed from given feature's

>>> data_x = np.array([[1, 2], [1, 3], [1, 4]])
>>> data_y = np.array([[2], [2], [2]])
>>> theta = np.array([[0.0, 0.0]])
>>> len_data = len(data_x)
>>> sum_of_square_error(data_x, data_y, len_data, theta).round(2)
2.0
"""
prod = np.dot(theta, data_x.transpose())
prod -= data_y.transpose()
Expand Down Expand Up @@ -89,10 +105,17 @@ def run_linear_regression(data_x, data_y):


def mean_absolute_error(predicted_y, original_y):
"""Return sum of square error for error calculation
"""
Return sum of square error for error calculation

:param predicted_y : contains the output of prediction (result vector)
:param original_y : contains values of expected outcome
:return : mean absolute error computed from given feature's

>>> mean_absolute_error([3.0, 2.0, 1.0], [2.5, 2.0, 1.0])
0.16666666666666666
>>> mean_absolute_error([5.0, 6.0], [5.0, 7.0])
0.5
"""
total = sum(abs(y - predicted_y[i]) for i, y in enumerate(original_y))
return total / len(original_y)
Expand Down
Loading