Skip to content
Merged
3 changes: 3 additions & 0 deletions DIRECTORY.md
Original file line number Diff line number Diff line change
Expand Up @@ -142,6 +142,7 @@
* [Haralick Descriptors](computer_vision/haralick_descriptors.py)
* [Harris Corner](computer_vision/harris_corner.py)
* [Horn Schunck](computer_vision/horn_schunck.py)
* [Intensity Based Segmentation](computer_vision/intensity_based_segmentation.py)
* [Mean Threshold](computer_vision/mean_threshold.py)
* [Mosaic Augmentation](computer_vision/mosaic_augmentation.py)
* [Pooling Functions](computer_vision/pooling_functions.py)
Expand Down Expand Up @@ -507,6 +508,7 @@
* [Kahns Algorithm Long](graphs/kahns_algorithm_long.py)
* [Kahns Algorithm Topo](graphs/kahns_algorithm_topo.py)
* [Karger](graphs/karger.py)
* [Lanczos Eigenvectors](graphs/lanczos_eigenvectors.py)
* [Markov Chain](graphs/markov_chain.py)
* [Matching Min Vertex Cover](graphs/matching_min_vertex_cover.py)
* [Minimum Path Sum](graphs/minimum_path_sum.py)
Expand Down Expand Up @@ -886,6 +888,7 @@
* [N Body Simulation](physics/n_body_simulation.py)
* [Newtons Law Of Gravitation](physics/newtons_law_of_gravitation.py)
* [Newtons Second Law Of Motion](physics/newtons_second_law_of_motion.py)
* [Period Of Pendulum](physics/period_of_pendulum.py)
* [Photoelectric Effect](physics/photoelectric_effect.py)
* [Potential Energy](physics/potential_energy.py)
* [Rainfall Intensity](physics/rainfall_intensity.py)
Expand Down
97 changes: 55 additions & 42 deletions maths/trapezoidal_rule.py
Original file line number Diff line number Diff line change
@@ -1,28 +1,25 @@
"""
Numerical integration or quadrature for a smooth function f with known values at x_i

This method is the classical approach of suming 'Equally Spaced Abscissas'

method 1:
"extended trapezoidal rule"
int(f) = dx/2 * (f1 + 2f2 + ... + fn)

"""


def method_1(boundary, steps):
def trapezoidal_rule(boundary, steps):
"""
Apply the extended trapezoidal rule to approximate the integral of function f(x)
over the interval defined by 'boundary' with the number of 'steps'.

Args:
boundary (list of floats): A list containing the start and end values [a, b].
steps (int): The number of steps or subintervals.
Returns:
float: Approximation of the integral of f(x) over [a, b].
Examples:
>>> method_1([0, 1], 10)
0.3349999999999999
Implements the extended trapezoidal rule for numerical integration.
The function f(x) is provided below.

:param boundary: List containing the lower and upper bounds of integration [a, b]
:param steps: The number of steps (intervals) used in the approximation
:return: The numerical approximation of the integral

>>> abs(trapezoidal_rule([0, 1], 10) - 0.33333) < 0.01
True
>>> abs(trapezoidal_rule([0, 1], 100) - 0.33333) < 0.01
True
>>> abs(trapezoidal_rule([0, 2], 1000) - 2.66667) < 0.01
True
>>> abs(trapezoidal_rule([1, 2], 1000) - 2.33333) < 0.01
True
"""
h = (boundary[1] - boundary[0]) / steps
a = boundary[0]
Expand All @@ -31,57 +28,73 @@ def method_1(boundary, steps):
y = 0.0
y += (h / 2.0) * f(a)
for i in x_i:
# print(i)
y += h * f(i)
y += (h / 2.0) * f(b)
return y


def make_points(a, b, h):
"""
Generates points between 'a' and 'b' with step size 'h', excluding the end points.
Args:
a (float): Start value
b (float): End value
h (float): Step size
Examples:
Generates points between a and b with step size h for trapezoidal integration.

:param a: The lower bound of integration
:param b: The upper bound of integration
:param h: The step size
:yield: The next x-value in the range (a, b)

>>> list(make_points(0, 1, 0.1)) # doctest: +NORMALIZE_WHITESPACE
[0.1, 0.2, 0.30000000000000004, 0.4, 0.5, 0.6, 0.7, 0.7999999999999999, \
0.8999999999999999]
>>> list(make_points(0, 10, 2.5))
[2.5, 5.0, 7.5]

>>> list(make_points(0, 10, 2))
[2, 4, 6, 8]

>>> list(make_points(1, 21, 5))
[6, 11, 16]

>>> list(make_points(1, 5, 2))
[3]

>>> list(make_points(1, 4, 3))
[]
"""
x = a + h
while x <= (b - h):
yield x
x = x + h
x += h


def f(x): # enter your function here
def f(x):
"""
Example:
>>> f(2)
4
This is the function to integrate, f(x) = (x - 0)^2 = x^2.

:param x: The input value
:return: The value of f(x)

>>> f(0)
0
>>> f(1)
1
>>> f(0.5)
0.25
"""
y = (x - 0) * (x - 0)
return y
return x**2


def main():
a = 0.0 # Lower bound of integration
b = 1.0 # Upper bound of integration
steps = 10.0 # define number of steps or resolution
boundary = [a, b] # define boundary of integration
y = method_1(boundary, steps)
"""
Main function to test the trapezoidal rule.
:a: Lower bound of integration
:b: Upper bound of integration
:steps: define number of steps or resolution
:boundary: define boundary of integration

>>> main()
y = 0.3349999999999999
"""
a = 0.0
b = 1.0
steps = 10.0
boundary = [a, b]
y = trapezoidal_rule(boundary, steps)
print(f"y = {y}")


Expand Down
Loading