Skip to content
Closed
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
88 changes: 88 additions & 0 deletions neural_network/activation_functions/parametric_relu.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,88 @@
"""
Parametric Rectified Linear Unit (PReLU)

Use Case: PReLU addresses the problem of dying ReLU by allowing a
small, learnable slope for negative values, which can improve model
performance.

For more detailed information, you can refer to the following link:
https://en.wikipedia.org/wiki/Rectifier_(neural_networks)#Parametric_ReLU
"""

import numpy as np


def parametric_rectified_linear_unit(
vector: np.ndarray, alpha: np.ndarray
) -> np.ndarray:
"""
Implements the Parametric ReLU (PReLU) activation function.

Parameters:
vector (np.ndarray): The input array for PReLU activation.
alpha (np.ndarray): The learnable slope for negative values,
must be the same shape as vector.

Returns:
np.ndarray: The input array after applying the PReLU activation.

Formula:
f(x) = x if x > 0 else f(x) = alpha * x

Examples:
>>> parametric_rectified_linear_unit(
... vector=np.array([2.3, 0.6, -2, -3.8]),
... alpha=np.array([0.3])
... )
array([ 2.3 , 0.6 , -0.6 , -1.14])

>>> parametric_rectified_linear_unit(
... vector=np.array([-9.2, -0.3, 0.45, -4.56]),
... alpha=np.array([0.067])
... )
array([-0.6164 , -0.0201 , 0.45 , -0.30552])

>>> parametric_rectified_linear_unit(
... vector=np.array([0, 0, 0]),
... alpha=np.array([0.1, 0.1, 0.1])
... )
array([0., 0., 0.])

>>> parametric_rectified_linear_unit(
... vector=np.array([-1, -2, -3]),
... alpha=np.array([0.5, 1, 1.5])
... )
array([-0.5, -2. , -4.5])

>>> parametric_rectified_linear_unit(
... vector=np.array([-1, 2, -3]),
... alpha=np.array([1, 0.5, 2])
... )
array([-1., 2., -6.])

>>> parametric_rectified_linear_unit(
... vector=np.array([-5, -10]),
... alpha=np.array([2, 3])
... )
array([-10, -30])

>>> parametric_rectified_linear_unit(
... vector=np.array([-1, -2]),
... alpha=np.array([1, 0])
... )
array([-1, 0])

>>> parametric_rectified_linear_unit(
... vector=np.array([1, -1]),
... alpha=np.array([0.5, 2])
... )
array([ 1., -2.])
"""

return np.where(vector > 0, vector, alpha * vector)


if __name__ == "__main__":
import doctest

doctest.testmod()