-
-
Notifications
You must be signed in to change notification settings - Fork 48.7k
Create artificial_neural_network.py #11873
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Changes from 6 commits
5791190
7f53cdc
b0ad505
79fed0c
f3e3a82
23e3ce2
d541527
8b31579
1cf7fce
a4161dc
b1f1cdc
56fb14b
9b354e4
5899554
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,203 @@ | ||
import numpy as np | ||
|
||
|
||
class SimpleANN: | ||
""" | ||
Simple Artificial Neural Network (ANN) | ||
|
||
- Feedforward Neural Network with 1 hidden layer and Sigmoid activation. | ||
- Uses Gradient Descent for backpropagation and Mean Squared Error (MSE) | ||
as the loss function. | ||
- Example demonstrates solving the XOR problem. | ||
""" | ||
|
||
<<<<<<< HEAD | ||
Check failure on line 14 in neural_network/artificial_neural_network.py
|
||
def __init__(self, input_size: int, hidden_size: int, output_size: int, | ||
learning_rate: float = 0.1) -> None: | ||
======= | ||
Check failure on line 17 in neural_network/artificial_neural_network.py
|
||
def __init__( | ||
self, | ||
input_size: int, | ||
hidden_size: int, | ||
output_size: int, | ||
learning_rate: float = 0.1, | ||
) -> None: | ||
>>>>>>> 79fed0c49891c60d2134ee45c6f6592c19f4cef5 | ||
""" | ||
Initialize the neural network with random weights and biases. | ||
|
||
Args: | ||
input_size (int): Number of input features. | ||
hidden_size (int): Number of neurons in the hidden layer. | ||
output_size (int): Number of neurons in the output layer. | ||
learning_rate (float): Learning rate for gradient descent. | ||
|
||
Example: | ||
>>> ann = SimpleANN(2, 2, 1) | ||
>>> isinstance(ann, SimpleANN) | ||
True | ||
""" | ||
rng = np.random.default_rng() | ||
self.weights_input_hidden = rng.standard_normal((input_size, hidden_size)) | ||
self.weights_hidden_output = rng.standard_normal((hidden_size, output_size)) | ||
self.bias_hidden = np.zeros((1, hidden_size)) | ||
self.bias_output = np.zeros((1, output_size)) | ||
self.learning_rate = learning_rate | ||
|
||
def sigmoid(self, value: np.ndarray) -> np.ndarray: | ||
""" | ||
Sigmoid activation function. | ||
|
||
Args: | ||
value (ndarray): Input value for activation. | ||
|
||
Returns: | ||
ndarray: Activated output using sigmoid function. | ||
|
||
Example: | ||
>>> ann = SimpleANN(2, 2, 1) | ||
>>> ann.sigmoid(np.array([0])) | ||
array([0.5]) | ||
""" | ||
return 1 / (1 + np.exp(-value)) | ||
|
||
def sigmoid_derivative(self, sigmoid_output: np.ndarray) -> np.ndarray: | ||
""" | ||
Derivative of the sigmoid function. | ||
|
||
Args: | ||
sigmoid_output (ndarray): Output after applying the sigmoid function. | ||
|
||
Returns: | ||
ndarray: Derivative of the sigmoid function. | ||
|
||
Example: | ||
>>> ann = SimpleANN(2, 2, 1) | ||
>>> output = ann.sigmoid(np.array([0])) # Use input 0 for testing | ||
>>> ann.sigmoid_derivative(output) | ||
array([0.25]) | ||
""" | ||
return sigmoid_output * (1 - sigmoid_output) | ||
|
||
def feedforward(self, inputs: np.ndarray) -> np.ndarray: | ||
""" | ||
Perform forward propagation through the network. | ||
|
||
Args: | ||
inputs (ndarray): Input features for the network. | ||
|
||
Returns: | ||
ndarray: Output from the network after feedforward pass. | ||
|
||
Example: | ||
>>> ann = SimpleANN(2, 2, 1) | ||
>>> inputs = np.array([[0, 0], [1, 1]]) | ||
>>> ann.feedforward(inputs).shape | ||
(2, 1) | ||
""" | ||
self.hidden_input = np.dot(inputs, self.weights_input_hidden) + self.bias_hidden | ||
self.hidden_output = self.sigmoid(self.hidden_input) | ||
self.final_input = ( | ||
np.dot(self.hidden_output, self.weights_hidden_output) + self.bias_output | ||
) | ||
self.final_output = self.sigmoid(self.final_input) | ||
return self.final_output | ||
|
||
<<<<<<< HEAD | ||
def backpropagation(self, inputs: np.ndarray, targets: np.ndarray, | ||
outputs: np.ndarray) -> None: | ||
======= | ||
def backpropagation( | ||
self, inputs: np.ndarray, targets: np.ndarray, outputs: np.ndarray | ||
) -> None: | ||
>>>>>>> 79fed0c49891c60d2134ee45c6f6592c19f4cef5 | ||
""" | ||
Perform backpropagation to adjust the weights and biases. | ||
|
||
Args: | ||
inputs (ndarray): Input features. | ||
targets (ndarray): True output labels. | ||
outputs (ndarray): Output predicted by the network. | ||
|
||
Example: | ||
>>> ann = SimpleANN(2, 2, 1) | ||
>>> inputs = np.array([[0, 0], [1, 1]]) | ||
>>> outputs = ann.feedforward(inputs) | ||
>>> targets = np.array([[0], [1]]) | ||
>>> ann.backpropagation(inputs, targets, outputs) | ||
""" | ||
error = targets - outputs | ||
output_gradient = error * self.sigmoid_derivative(outputs) | ||
hidden_error = output_gradient.dot(self.weights_hidden_output.T) | ||
hidden_gradient = hidden_error * self.sigmoid_derivative(self.hidden_output) | ||
|
||
self.weights_hidden_output += ( | ||
self.hidden_output.T.dot(output_gradient) * self.learning_rate | ||
) | ||
self.bias_output += ( | ||
np.sum(output_gradient, axis=0, keepdims=True) * self.learning_rate | ||
) | ||
|
||
<<<<<<< HEAD | ||
self.weights_input_hidden += ( | ||
inputs.T.dot(hidden_gradient) * self.learning_rate | ||
) | ||
======= | ||
self.weights_input_hidden += inputs.T.dot(hidden_gradient) * self.learning_rate | ||
>>>>>>> 79fed0c49891c60d2134ee45c6f6592c19f4cef5 | ||
self.bias_hidden += ( | ||
np.sum(hidden_gradient, axis=0, keepdims=True) * self.learning_rate | ||
) | ||
|
||
<<<<<<< HEAD | ||
def train(self, inputs: np.ndarray, targets: np.ndarray, | ||
epochs: int = 10000, verbose: bool = False) -> None: | ||
======= | ||
def train( | ||
self, inputs: np.ndarray, targets: np.ndarray, epochs: int = 10000 | ||
) -> None: | ||
>>>>>>> 79fed0c49891c60d2134ee45c6f6592c19f4cef5 | ||
""" | ||
Train the neural network on the given input and target data. | ||
|
||
Args: | ||
inputs (ndarray): Input features for training. | ||
targets (ndarray): True labels for training. | ||
epochs (int): Number of training iterations. | ||
verbose (bool): Whether to print loss every 1000 epochs. | ||
|
||
Example: | ||
>>> ann = SimpleANN(2, 2, 1) | ||
>>> inputs = np.array([[0, 0], [1, 1]]) | ||
>>> targets = np.array([[0], [1]]) | ||
>>> ann.train(inputs, targets, epochs=1, verbose=False) | ||
""" | ||
for epoch in range(epochs): | ||
outputs = self.feedforward(inputs) | ||
self.backpropagation(inputs, targets, outputs) | ||
if verbose and epoch % 1000 == 0: | ||
loss = np.mean(np.square(targets - outputs)) | ||
print(f"Epoch {epoch}, Loss: {loss}") | ||
|
||
def predict(self, inputs: np.ndarray) -> np.ndarray: | ||
""" | ||
Predict the output for new input data. | ||
|
||
Args: | ||
inputs (ndarray): Input data for prediction. | ||
|
||
Returns: | ||
ndarray: Predicted output from the network. | ||
|
||
Example: | ||
>>> ann = SimpleANN(2, 2, 1) | ||
>>> inputs = np.array([[0, 0], [1, 1]]) | ||
>>> ann.predict(inputs).shape | ||
(2, 1) | ||
""" | ||
return self.feedforward(inputs) | ||
|
||
if __name__ == "__main__": | ||
AHuzail marked this conversation as resolved.
Show resolved
Hide resolved
|
||
import doctest | ||
|
||
doctest.testmod() |
Uh oh!
There was an error while loading. Please reload this page.