-
-
Notifications
You must be signed in to change notification settings - Fork 48.7k
Generative Adversarial Network for MNIST Dataset #11960
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Changes from 2 commits
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,275 @@ | ||
""" | ||
Check failure on line 1 in computer_vision/Generative_Adversarial_Network_MNIST.py
|
||
Generative Adversarial Network | ||
|
||
Objective : To train a GAN model to generate handwritten digits that can be transferred to other domains. | ||
Check failure on line 4 in computer_vision/Generative_Adversarial_Network_MNIST.py
|
||
|
||
Resources GAN Theory : | ||
https://en.wikipedia.org/wiki/Generative_adversarial_network | ||
Resources PyTorch: https://pytorch.org/ | ||
|
||
Download dataset from : | ||
PyTorch internal function | ||
|
||
1. Fetch the Dataset with PyTorch function. | ||
2. Create Dataloader. | ||
3. Create Discriminator and Generator. | ||
4. Set the hyperparameters and models. | ||
5. Set the loss functions. | ||
6. Create the training loop. | ||
7. Visualize the losses. | ||
8. Visualize the result from GAN. | ||
|
||
""" | ||
|
||
|
||
|
||
|
||
%matplotlib inline | ||
Check failure on line 27 in computer_vision/Generative_Adversarial_Network_MNIST.py
|
||
|
||
import numpy as np | ||
import torch | ||
import matplotlib.pyplot as plt | ||
from torchvision import datasets | ||
import torchvision.transforms as transforms | ||
|
||
# number of subprocesses to use for data loading | ||
num_workers = 0 | ||
# how many samples per batch to load | ||
batch_size = 64 | ||
|
||
# convert data to torch.FloatTensor | ||
transform = transforms.ToTensor() | ||
|
||
# get the training datasets | ||
train_data = datasets.MNIST(root='data', train=True, | ||
download=True, transform=transform) | ||
|
||
# prepare data loader | ||
train_loader = torch.utils.data.DataLoader(train_data, batch_size=batch_size, | ||
num_workers=num_workers) | ||
|
||
import torch.nn as nn | ||
import torch.nn.functional as F | ||
|
||
# Creating Generator and Discriminator for GAN | ||
|
||
class discriminator(nn.Module): | ||
def __init__(self,input_size,output_size,hidden_dim): | ||
super(discriminator,self).__init__() | ||
|
||
#defining the layers of the discriminator | ||
self.fc1 = nn.Linear(input_size,hidden_dim*4) | ||
self.fc2 = nn.Linear(hidden_dim*4,hidden_dim*2) | ||
self.fc3 = nn.Linear(hidden_dim*2,hidden_dim) | ||
#final fully connected layer | ||
self.fc4 = nn.Linear(hidden_dim,output_size) | ||
#dropout layer | ||
self.dropout = nn.Dropout(0.2) | ||
|
||
def forward(self,x): | ||
# pass x through all layers | ||
# apply leaky relu activation to all hidden layers | ||
x = x.view(-1,28*28) #flattening the image | ||
x = F.leaky_relu(self.fc1(x),0.2) | ||
x = self.dropout(x) | ||
x = F.leaky_relu(self.fc2(x),0.2) | ||
x = self.dropout(x) | ||
x = F.leaky_relu(self.fc3(x),0.2) | ||
x = self.dropout(x) | ||
x_out = self.fc4(x) | ||
|
||
return x_out | ||
|
||
class generator(nn.Module): | ||
|
||
def __init__(self, input_size, output_size,hidden_dim): | ||
super(generator, self).__init__() | ||
|
||
Check failure on line 87 in computer_vision/Generative_Adversarial_Network_MNIST.py
|
||
# define all layers | ||
self.fc1 = nn.Linear(input_size,hidden_dim) | ||
self.fc2 = nn.Linear(hidden_dim,hidden_dim*2) | ||
self.fc3 = nn.Linear(hidden_dim*2,hidden_dim*4) | ||
#final layer | ||
self.fc4 = nn.Linear(hidden_dim*4,output_size) | ||
#dropout layer | ||
self.dropout = nn.Dropout(0.2) | ||
|
||
Check failure on line 96 in computer_vision/Generative_Adversarial_Network_MNIST.py
|
||
|
||
def forward(self, x): | ||
# pass x through all layers | ||
# final layer should have tanh applied | ||
x = F.leaky_relu(self.fc1(x),0.2) | ||
x = self.dropout(x) | ||
x = F.leaky_relu(self.fc2(x),0.2) | ||
x = self.dropout(x) | ||
x = F.leaky_relu(self.fc3(x),0.2) | ||
x = self.dropout(x) | ||
x_out = F.tanh(self.fc4(x)) | ||
return x_out | ||
|
||
# Calculate losses | ||
def real_loss(D_out, smooth=False): | ||
# compare logits to real labels | ||
# smooth labels if smooth=True | ||
#puting it into cuda | ||
batch_size = D_out.size(0) | ||
if smooth: | ||
labels = torch.ones(batch_size).cuda()*0.9 | ||
else: | ||
labels = torch.ones(batch_size).cuda() | ||
criterion = nn.BCEWithLogitsLoss() | ||
loss = criterion(D_out.squeeze(),labels) | ||
return loss | ||
|
||
def fake_loss(D_out): | ||
# compare logits to fake labels | ||
batch_size = D_out.size(0) | ||
labels = torch.zeros(batch_size).cuda() | ||
criterion = nn.BCEWithLogitsLoss() | ||
loss = criterion(D_out.squeeze(),labels) | ||
return loss | ||
|
||
# Discriminator hyperparams | ||
# Size of input image to discriminator (28*28) | ||
input_size = 784 | ||
# Size of discriminator output (real or fake) | ||
d_output_size = 1 | ||
# Size of *last* hidden layer in the discriminator | ||
d_hidden_size = 32 | ||
|
||
# Generator hyperparams | ||
|
||
# Size of latent vector to give to generator | ||
z_size = 100 | ||
# Size of discriminator output (generated image) | ||
g_output_size = 784 | ||
# Size of *first* hidden layer in the generator | ||
g_hidden_size = 32 | ||
|
||
# instantiate discriminator and generator and put it in cuda mode | ||
D = discriminator(input_size, d_output_size,d_hidden_size).cuda() | ||
G = generator(z_size, g_output_size, g_hidden_size).cuda() | ||
|
||
import pickle as pkl | ||
|
||
# training hyperparams | ||
num_epochs = 40 | ||
|
||
# keep track of loss and generated, "fake" samples | ||
samples = [] | ||
losses = [] | ||
|
||
print_every = 400 | ||
|
||
# Get some fixed data for sampling. These are images that are held | ||
# constant throughout training, and allow us to inspect the model's performance | ||
sample_size=16 | ||
fixed_z = np.random.uniform(-1, 1, size=(sample_size, z_size)) | ||
fixed_z = torch.from_numpy(fixed_z).float().cuda() | ||
|
||
# train the network | ||
D.train() | ||
G.train() | ||
for epoch in range(num_epochs): | ||
|
||
Check failure on line 174 in computer_vision/Generative_Adversarial_Network_MNIST.py
|
||
for batch_i, (real_images, _) in enumerate(train_loader): | ||
|
||
Check failure on line 176 in computer_vision/Generative_Adversarial_Network_MNIST.py
|
||
batch_size = real_images.size(0) | ||
|
||
Check failure on line 178 in computer_vision/Generative_Adversarial_Network_MNIST.py
|
||
## Important rescaling step ## | ||
Check failure on line 179 in computer_vision/Generative_Adversarial_Network_MNIST.py
|
||
real_images = (real_images*2 - 1).cuda() # rescale input images from [0,1) to [-1, 1) | ||
|
||
# ============================================ | ||
# TRAIN THE DISCRIMINATOR | ||
# ============================================ | ||
d_optimizer.zero_grad() | ||
# 1. Train with real images | ||
|
||
# Compute the discriminator losses on real images | ||
# use smoothed labels | ||
D_real = D(real_images) | ||
d_real_loss = real_loss(D_real,smooth=True) | ||
# 2. Train with fake images | ||
|
||
# Generate fake images | ||
z = np.random.uniform(-1, 1, size=(batch_size, z_size)) | ||
z = torch.from_numpy(z).float().cuda() | ||
fake_images = G(z) | ||
|
||
# Compute the discriminator losses on fake images | ||
D_fake = D(fake_images) | ||
d_fake_loss = fake_loss(D_fake) | ||
# add up real and fake losses and perform backprop | ||
d_loss = d_real_loss + d_fake_loss | ||
d_loss.backward() | ||
d_optimizer.step() | ||
|
||
|
||
# ========================================= | ||
# TRAIN THE GENERATOR | ||
# ========================================= | ||
g_optimizer.zero_grad() | ||
# 1. Train with fake images and flipped labels | ||
|
||
# Generate fake images | ||
z = np.random.uniform(-1, 1, size=(batch_size, z_size)) | ||
z = torch.from_numpy(z).float().cuda() | ||
fake_images = G(z) | ||
# Compute the discriminator losses on fake images | ||
# using flipped labels! | ||
D_fake = D(fake_images) | ||
# perform backprop | ||
g_loss = real_loss(D_fake) | ||
g_loss.backward() | ||
g_optimizer.step() | ||
|
||
|
||
# Print some loss stats | ||
if batch_i % print_every == 0: | ||
# print discriminator and generator loss | ||
print('Epoch [{:5d}/{:5d}] | d_loss: {:6.4f} | g_loss: {:6.4f}'.format( | ||
epoch+1, num_epochs, d_loss.item(), g_loss.item())) | ||
|
||
|
||
## AFTER EACH EPOCH## | ||
# append discriminator loss and generator loss | ||
losses.append((d_loss.item(), g_loss.item())) | ||
|
||
# generate and save sample, fake images | ||
G.eval() # eval mode for generating samples | ||
samples_z = G(fixed_z) | ||
samples.append(samples_z) | ||
G.train() # back to train mode | ||
|
||
|
||
# Save training generator samples | ||
with open('train_samples.pkl', 'wb') as f: | ||
pkl.dump(samples, f) | ||
|
||
#ploting Discriminator and Generator loss | ||
fig, ax = plt.subplots() | ||
losses = np.array(losses) | ||
plt.plot(losses.T[0], label='Discriminator') | ||
plt.plot(losses.T[1], label='Generator') | ||
plt.title("Training Losses") | ||
plt.legend() | ||
plt.show() | ||
|
||
|
||
#Viewing the results of the GAN | ||
def view_samples(epoch, samples): | ||
|
||
fig, axes = plt.subplots(figsize=(7,7), nrows=4, ncols=4, sharey=True, sharex=True) | ||
fig.suptitle("Generated Digits") | ||
for ax, img in zip(axes.flatten(), samples[epoch]): | ||
img = img.detach().cpu().numpy() | ||
ax.xaxis.set_visible(False) | ||
ax.yaxis.set_visible(False) | ||
im = ax.imshow(img.reshape((28,28)), cmap='Greys_r') | ||
|
||
with open('train_samples.pkl', 'rb') as f: | ||
samples = pkl.load(f) | ||
|
||
view_samples(-1,samples) | ||
plt.show() | ||
|
Uh oh!
There was an error while loading. Please reload this page.