-
-
Notifications
You must be signed in to change notification settings - Fork 342
Implemented the Minimum Path Sum algorithm in R. #172
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
siriak
merged 5 commits into
TheAlgorithms:master
from
Sachinn-64:feat-minimum-path-sum
Oct 11, 2025
Merged
Changes from all commits
Commits
Show all changes
5 commits
Select commit
Hold shift + click to select a range
568edb0
Implemented the Minimum Path Sum algorithm in R.
Sachinn-64 1ac9497
Update dynamic_programming/minimum_path_sum.r
Sachinn-64 26eecfa
Update dynamic_programming/minimum_path_sum.r
Sachinn-64 a564348
Update dynamic_programming/minimum_path_sum.r
Sachinn-64 9b1e334
Merge branch 'master' into feat-minimum-path-sum
siriak File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,373 @@ | ||
| # Minimum Path Sum Problem | ||
| # | ||
| # The Minimum Path Sum problem finds the minimum sum path from the top-left corner | ||
| # to the bottom-right corner of a grid, moving only right or down at each step. | ||
| # This is a classic dynamic programming problem that appears in various forms. | ||
| # | ||
| # Time Complexity: O(m * n) where m = number of rows, n = number of columns | ||
| # Space Complexity: O(m * n) for DP table, O(min(m, n)) for optimized version | ||
| # | ||
| # Applications: | ||
| # - Grid-based pathfinding algorithms | ||
| # - Resource optimization in 2D grids | ||
| # - Game development (pathfinding with costs) | ||
| # - Network routing optimization | ||
| # - Cost minimization in transportation | ||
|
|
||
| # Basic DP solution for Minimum Path Sum | ||
| minimum_path_sum <- function(grid) { | ||
| #' Find the minimum path sum from top-left to bottom-right corner | ||
| #' @param grid: 2D matrix of non-negative integers | ||
| #' @return: List containing minimum sum, path, and DP table | ||
|
|
||
| m <- nrow(grid) | ||
| n <- ncol(grid) | ||
|
|
||
| # Handle edge case | ||
| if (m == 0 || n == 0) { | ||
| return(list( | ||
| min_sum = 0, | ||
| path = c(), | ||
| dp_table = matrix(0, nrow = 1, ncol = 1) | ||
| )) | ||
| } | ||
|
|
||
| # Create DP table: dp[i, j] = minimum sum to reach position (i, j) | ||
| dp <- matrix(0, nrow = m, ncol = n) | ||
|
|
||
| # Initialize first row and column | ||
| dp[1, 1] <- grid[1, 1] | ||
|
|
||
| # Fill first row (can only move right) | ||
| if (n > 1) { | ||
| for (j in 2:n) { | ||
| dp[1, j] <- dp[1, j - 1] + grid[1, j] | ||
| } | ||
| } | ||
|
|
||
| # Fill first column (can only move down) | ||
| if (m > 1) { | ||
| for (i in 2:m) { | ||
| dp[i, 1] <- dp[i - 1, 1] + grid[i, 1] | ||
| } | ||
| } | ||
|
|
||
| # Fill remaining cells | ||
| if (m > 1 && n > 1) { | ||
| for (i in 2:m) { | ||
| for (j in 2:n) { | ||
| dp[i, j] <- min(dp[i - 1, j], dp[i, j - 1]) + grid[i, j] | ||
| } | ||
| } | ||
| } | ||
|
|
||
| # Backtrack to find the path | ||
| path <- list() | ||
| i <- m | ||
| j <- n | ||
|
|
||
| while (i > 1 || j > 1) { | ||
| path <- c(list(c(i, j)), path) | ||
|
|
||
| if (i == 1) { | ||
| # Can only move left | ||
| j <- j - 1 | ||
| } else if (j == 1) { | ||
| # Can only move up | ||
| i <- i - 1 | ||
| } else { | ||
| # Choose direction with minimum sum | ||
| if (dp[i - 1, j] < dp[i, j - 1]) { | ||
| i <- i - 1 | ||
| } else { | ||
| j <- j - 1 | ||
| } | ||
| } | ||
| } | ||
| path <- c(list(c(1, 1)), path) | ||
|
|
||
| return(list( | ||
| min_sum = dp[m, n], | ||
| path = path, | ||
| dp_table = dp | ||
| )) | ||
| } | ||
|
|
||
| # Space-optimized version using only 1D array | ||
| minimum_path_sum_optimized <- function(grid) { | ||
| #' Space optimized minimum path sum using 1D array | ||
| #' @param grid: 2D matrix of non-negative integers | ||
| #' @return: Minimum path sum | ||
|
|
||
| m <- nrow(grid) | ||
| n <- ncol(grid) | ||
|
|
||
| if (m == 0 || n == 0) return(0) | ||
|
|
||
| # Use the smaller dimension for space optimization | ||
| if (m <= n) { | ||
| # Process row by row | ||
| dp <- rep(0, m) | ||
| dp[1] <- grid[1, 1] | ||
|
|
||
| # Initialize first row | ||
| if (m > 1) { | ||
| for (i in 2:m) { | ||
| dp[i] <- dp[i - 1] + grid[i, 1] | ||
| } | ||
| } | ||
|
|
||
| # Process remaining columns | ||
| for (j in 2:n) { | ||
| dp[1] <- dp[1] + grid[1, j] | ||
| for (i in 2:m) { | ||
| dp[i] <- min(dp[i - 1], dp[i]) + grid[i, j] | ||
| } | ||
| } | ||
| } else { | ||
| # Process column by column | ||
| dp <- rep(0, n) | ||
| dp[1] <- grid[1, 1] | ||
|
|
||
| # Initialize first column | ||
| for (j in 2:n) { | ||
| dp[j] <- dp[j - 1] + grid[1, j] | ||
| } | ||
Sachinn-64 marked this conversation as resolved.
Show resolved
Hide resolved
|
||
|
|
||
| # Process remaining rows | ||
| for (i in 2:m) { | ||
| dp[1] <- dp[1] + grid[i, 1] | ||
| for (j in 2:n) { | ||
| dp[j] <- min(dp[j - 1], dp[j]) + grid[i, j] | ||
| } | ||
| } | ||
Sachinn-64 marked this conversation as resolved.
Show resolved
Hide resolved
|
||
| } | ||
|
|
||
| return(dp[length(dp)]) | ||
| } | ||
|
|
||
| # Function to find all possible minimum paths | ||
| find_all_minimum_paths <- function(grid) { | ||
| #' Find all possible paths that achieve the minimum sum | ||
| #' @param grid: 2D matrix of non-negative integers | ||
| #' @return: List of all minimum cost paths | ||
|
|
||
| m <- nrow(grid) | ||
| n <- ncol(grid) | ||
|
|
||
| if (m == 0 || n == 0) return(list()) | ||
|
|
||
| # First compute the minimum sum | ||
| result <- minimum_path_sum(grid) | ||
| min_sum <- result$min_sum | ||
|
|
||
| all_paths <- list() | ||
|
|
||
| # Use recursive backtracking to find all paths with minimum sum | ||
| find_paths_recursive <- function(current_path, current_sum, i, j) { | ||
| current_sum <- current_sum + grid[i, j] | ||
|
|
||
| # If we've reached the bottom-right corner | ||
| if (i == m && j == n) { | ||
| if (current_sum == min_sum) { | ||
| all_paths <<- c(all_paths, list(c(current_path, list(c(i, j))))) | ||
Sachinn-64 marked this conversation as resolved.
Show resolved
Hide resolved
Sachinn-64 marked this conversation as resolved.
Show resolved
Hide resolved
siriak marked this conversation as resolved.
Show resolved
Hide resolved
|
||
| } | ||
| return | ||
| } | ||
|
|
||
| # If current sum exceeds minimum, prune | ||
| if (current_sum > min_sum) { | ||
| return | ||
| } | ||
|
|
||
| # Move right | ||
| if (j < n) { | ||
| find_paths_recursive(c(current_path, list(c(i, j))), current_sum, i, j + 1) | ||
| } | ||
|
|
||
| # Move down | ||
| if (i < m) { | ||
| find_paths_recursive(c(current_path, list(c(i, j))), current_sum, i + 1, j) | ||
| } | ||
| } | ||
|
|
||
| find_paths_recursive(list(), 0, 1, 1) | ||
| return(all_paths) | ||
| } | ||
|
|
||
| # Helper function to print DP table | ||
| print_minimum_path_sum_dp <- function(dp_table, grid) { | ||
| m <- nrow(grid) | ||
| n <- ncol(grid) | ||
|
|
||
| cat("DP Table for Minimum Path Sum:\n") | ||
| cat("Grid:\n") | ||
| for (i in 1:m) { | ||
| cat(" ") | ||
| for (j in 1:n) { | ||
| cat(sprintf("%3d ", grid[i, j])) | ||
| } | ||
| cat("\n") | ||
| } | ||
| cat("\nDP Table:\n") | ||
| for (i in 1:m) { | ||
| cat(" ") | ||
| for (j in 1:n) { | ||
| cat(sprintf("%3d ", dp_table[i, j])) | ||
| } | ||
| cat("\n") | ||
| } | ||
| cat("\n") | ||
| } | ||
|
|
||
| # Helper function to visualize path on grid | ||
| visualize_path <- function(grid, path) { | ||
| m <- nrow(grid) | ||
| n <- ncol(grid) | ||
|
|
||
| cat("Path Visualization:\n") | ||
| cat("Grid with path marked (*):\n") | ||
|
|
||
| # Create a matrix to mark the path | ||
| path_matrix <- matrix(" ", nrow = m, ncol = n) | ||
|
|
||
| for (pos in path) { | ||
| path_matrix[pos[1], pos[2]] <- "*" | ||
| } | ||
|
|
||
| for (i in 1:m) { | ||
| cat(" ") | ||
| for (j in 1:n) { | ||
| if (path_matrix[i, j] == "*") { | ||
| cat(sprintf("%3s ", "*")) | ||
| } else { | ||
| cat(sprintf("%3d ", grid[i, j])) | ||
| } | ||
| } | ||
| cat("\n") | ||
| } | ||
| cat("\n") | ||
| } | ||
|
|
||
| # =========================== | ||
| # Example Usage & Testing | ||
| # =========================== | ||
| cat("=== Minimum Path Sum Problem (Dynamic Programming) ===\n\n") | ||
|
|
||
| # Test 1: Basic Example | ||
| cat("Test 1: Basic Example\n") | ||
| grid1 <- matrix(c(1, 3, 1, 1, 5, 1, 4, 2, 1), nrow = 3, ncol = 3, byrow = TRUE) | ||
| cat("Grid:\n") | ||
| print(grid1) | ||
|
|
||
| result1 <- minimum_path_sum(grid1) | ||
| print_minimum_path_sum_dp(result1$dp_table, grid1) | ||
| cat("Minimum Path Sum:", result1$min_sum, "\n") | ||
| cat("Path (row, col):", paste(sapply(result1$path, function(x) paste("(", x[1], ",", x[2], ")", sep="")), collapse = " -> "), "\n") | ||
| visualize_path(grid1, result1$path) | ||
| cat("\n") | ||
|
|
||
| # Test 2: Optimized Version | ||
| cat("Test 2: Space Optimized Version\n") | ||
| min_sum_opt <- minimum_path_sum_optimized(grid1) | ||
| cat("Minimum Path Sum (Optimized):", min_sum_opt, "\n") | ||
| cat("Verification: Both methods match:", result1$min_sum == min_sum_opt, "\n\n") | ||
|
|
||
| # Test 3: Single Row/Column Cases | ||
| cat("Test 3: Edge Cases\n") | ||
| cat("Single row grid:\n") | ||
| grid_row <- matrix(c(1, 2, 3, 4, 5), nrow = 1) | ||
| print(grid_row) | ||
| result_row <- minimum_path_sum(grid_row) | ||
| cat("Minimum sum:", result_row$min_sum, "\n\n") | ||
|
|
||
| cat("Single column grid:\n") | ||
| grid_col <- matrix(c(1, 2, 3, 4, 5), ncol = 1) | ||
| print(grid_col) | ||
| result_col <- minimum_path_sum(grid_col) | ||
| cat("Minimum sum:", result_col$min_sum, "\n\n") | ||
|
|
||
| # Test 4: Larger Grid | ||
| cat("Test 4: Larger Grid (4x5)\n") | ||
| # Set random seed for reproducibility in tests. The value 42 is chosen arbitrarily. | ||
| SEED <- 42 | ||
| set.seed(SEED) | ||
| grid_large <- matrix(sample(1:9, 20, replace = TRUE), nrow = 4, ncol = 5) | ||
| cat("Grid:\n") | ||
| print(grid_large) | ||
|
|
||
| result_large <- minimum_path_sum(grid_large) | ||
| cat("Minimum Path Sum:", result_large$min_sum, "\n") | ||
| cat("Path length:", length(result_large$path), "steps\n") | ||
| visualize_path(grid_large, result_large$path) | ||
| cat("\n") | ||
|
|
||
| # Test 5: Performance Comparison | ||
Sachinn-64 marked this conversation as resolved.
Show resolved
Hide resolved
|
||
| cat("Test 5: Performance Comparison (6x8 grid)\n") | ||
| grid_perf <- matrix(sample(1:20, 48, replace = TRUE), nrow = 6, ncol = 8) | ||
Sachinn-64 marked this conversation as resolved.
Show resolved
Hide resolved
|
||
|
|
||
| library(microbenchmark) | ||
Sachinn-64 marked this conversation as resolved.
Show resolved
Hide resolved
siriak marked this conversation as resolved.
Show resolved
Hide resolved
|
||
|
|
||
| mbm <- microbenchmark( | ||
| std = minimum_path_sum(grid_perf), | ||
| opt = minimum_path_sum_optimized(grid_perf), | ||
| times = 100L | ||
| ) | ||
|
|
||
| result_std <- minimum_path_sum(grid_perf) | ||
| result_opt <- minimum_path_sum_optimized(grid_perf) | ||
|
|
||
| cat("Standard DP result:", result_std$min_sum, "\n") | ||
| cat("Optimized DP result:", result_opt, "\n") | ||
| cat("Standard DP median time:", sprintf("%.6f sec", median(mbm$time[mbm$expr == "std"])/1e9), "\n") | ||
| cat("Optimized DP median time:", sprintf("%.6f sec", median(mbm$time[mbm$expr == "opt"])/1e9), "\n") | ||
| cat("Results match:", result_std$min_sum == result_opt, "\n\n") | ||
|
|
||
| # Test 6: Multiple Minimum Paths | ||
| cat("Test 6: Multiple Minimum Paths\n") | ||
| grid_multiple <- matrix(c(1, 2, 1, 1, 1, 1, 1, 1, 1), nrow = 3, ncol = 3, byrow = TRUE) | ||
| cat("Grid:\n") | ||
| print(grid_multiple) | ||
|
|
||
| result_multiple <- minimum_path_sum(grid_multiple) | ||
| cat("Minimum Path Sum:", result_multiple$min_sum, "\n") | ||
| cat("One possible path:", paste(sapply(result_multiple$path, function(x) paste("(", x[1], ",", x[2], ")", sep="")), collapse = " -> "), "\n") | ||
|
|
||
| # Find all minimum paths | ||
| all_paths <- find_all_minimum_paths(grid_multiple) | ||
| cat("Total number of minimum paths:", length(all_paths), "\n") | ||
| for (i in seq_along(all_paths)) { | ||
| path_str <- paste(sapply(all_paths[[i]], function(x) paste("(", x[1], ",", x[2], ")", sep="")), collapse = " -> ") | ||
| path_sum <- sum(sapply(all_paths[[i]], function(x) grid_multiple[x[1], x[2]])) | ||
| cat("Path", i, ":", path_str, "(sum =", path_sum, ")\n") | ||
| } | ||
| cat("\n") | ||
|
|
||
| # Test 7: Real-world Example - Cost Optimization | ||
| cat("Test 7: Real-world Example - Transportation Cost Optimization\n") | ||
| # Grid representing transportation costs between cities | ||
| transport_grid <- matrix(c( | ||
| 2, 3, 4, 2, 1, | ||
| 1, 2, 1, 3, 2, | ||
| 3, 1, 2, 1, 4, | ||
| 2, 4, 1, 2, 3 | ||
| ), nrow = 4, ncol = 5, byrow = TRUE) | ||
|
|
||
| cat("Transportation Cost Grid:\n") | ||
| print(transport_grid) | ||
|
|
||
| transport_result <- minimum_path_sum(transport_grid) | ||
| cat("Minimum transportation cost:", transport_result$min_sum, "\n") | ||
| cat("Optimal route:", paste(sapply(transport_result$path, function(x) paste("City(", x[1], ",", x[2], ")", sep="")), collapse = " -> "), "\n") | ||
| visualize_path(transport_grid, transport_result$path) | ||
|
|
||
| # Calculate cost breakdown | ||
| cat("Cost breakdown:\n") | ||
| total_cost <- 0 | ||
| for (i in seq_along(transport_result$path)) { | ||
| pos <- transport_result$path[[i]] | ||
| cost <- transport_grid[pos[1], pos[2]] | ||
| total_cost <- total_cost + cost | ||
| cat(" Step", i, ": City(", pos[1], ",", pos[2], ") =", cost, "\n") | ||
| } | ||
| cat("Total cost verification:", total_cost, "\n") | ||
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Uh oh!
There was an error while loading. Please reload this page.