-
-
Notifications
You must be signed in to change notification settings - Fork 342
Add Black-Scholes Option Pricing Algorithm in R #200
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
siriak
merged 1 commit into
TheAlgorithms:master
from
iampratik13:black_scholes_option_pricing.r
Oct 12, 2025
Merged
Changes from all commits
Commits
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,251 @@ | ||
| # Black-Scholes Option Pricing Algorithm in R | ||
| # Implements the Black-Scholes-Merton model for European option pricing | ||
| # Features: Call/Put pricing, Greeks calculation, and implied volatility estimation | ||
|
|
||
| library(R6) | ||
|
|
||
| #' BlackScholesCalculator Class | ||
| #' @description R6 class for option pricing using Black-Scholes model | ||
| #' @details Calculates option prices and Greeks for European options | ||
| #' Assumptions: | ||
| #' - No dividend payments | ||
| #' - European-style options (can only be exercised at expiration) | ||
| #' - Log-normal distribution of stock prices | ||
| #' - Constant risk-free rate and volatility | ||
| #' - No transaction costs or taxes | ||
| #' - Perfectly divisible securities | ||
| BlackScholesCalculator <- R6Class( | ||
| "BlackScholesCalculator", | ||
|
|
||
| public = list( | ||
| #' @description Initialize calculator with market parameters | ||
| #' @param r Risk-free interest rate (annualized) | ||
| #' @param include_checks Whether to perform parameter validation | ||
| initialize = function(r = 0.05, include_checks = TRUE) { | ||
| private$risk_free_rate <- r | ||
| private$validate_params <- include_checks | ||
| invisible(self) | ||
| }, | ||
|
|
||
| #' @description Calculate call option price | ||
| #' @param S Current stock price | ||
| #' @param K Strike price | ||
| #' @param T Time to expiration (in years) | ||
| #' @param sigma Volatility (annualized) | ||
| calculate_call_price = function(S, K, T, sigma) { | ||
| if (private$validate_params) { | ||
| private$validate_inputs(S, K, T, sigma) | ||
| } | ||
|
|
||
| d1 <- private$calculate_d1(S, K, T, sigma) | ||
| d2 <- private$calculate_d2(d1, sigma, T) | ||
|
|
||
| call_price <- S * stats::pnorm(d1) - K * exp(-private$risk_free_rate * T) * stats::pnorm(d2) | ||
| return(call_price) | ||
| }, | ||
|
|
||
| #' @description Calculate put option price | ||
| #' @param S Current stock price | ||
| #' @param K Strike price | ||
| #' @param T Time to expiration (in years) | ||
| #' @param sigma Volatility (annualized) | ||
| calculate_put_price = function(S, K, T, sigma) { | ||
| if (private$validate_params) { | ||
| private$validate_inputs(S, K, T, sigma) | ||
| } | ||
|
|
||
| d1 <- private$calculate_d1(S, K, T, sigma) | ||
| d2 <- private$calculate_d2(d1, sigma, T) | ||
|
|
||
| put_price <- K * exp(-private$risk_free_rate * T) * stats::pnorm(-d2) - S * stats::pnorm(-d1) | ||
| return(put_price) | ||
| }, | ||
|
|
||
| #' @description Calculate all Greeks for a call option | ||
| #' @param S Current stock price | ||
| #' @param K Strike price | ||
| #' @param T Time to expiration (in years) | ||
| #' @param sigma Volatility (annualized) | ||
| calculate_call_greeks = function(S, K, T, sigma) { | ||
| if (private$validate_params) { | ||
| private$validate_inputs(S, K, T, sigma) | ||
| } | ||
|
|
||
| d1 <- private$calculate_d1(S, K, T, sigma) | ||
| d2 <- private$calculate_d2(d1, sigma, T) | ||
|
|
||
| # Calculate Greeks | ||
| delta <- stats::pnorm(d1) | ||
| gamma <- stats::dnorm(d1) / (S * sigma * sqrt(T)) | ||
| theta <- (-S * stats::dnorm(d1) * sigma / (2 * sqrt(T)) - | ||
| private$risk_free_rate * K * exp(-private$risk_free_rate * T) * stats::pnorm(d2)) | ||
| vega <- S * sqrt(T) * stats::dnorm(d1) | ||
| rho <- K * T * exp(-private$risk_free_rate * T) * stats::pnorm(d2) | ||
|
|
||
| return(list( | ||
| delta = delta, | ||
| gamma = gamma, | ||
| theta = theta, | ||
| vega = vega, | ||
| rho = rho | ||
| )) | ||
| }, | ||
|
|
||
| #' @description Calculate all Greeks for a put option | ||
| #' @param S Current stock price | ||
| #' @param K Strike price | ||
| #' @param T Time to expiration (in years) | ||
| #' @param sigma Volatility (annualized) | ||
| calculate_put_greeks = function(S, K, T, sigma) { | ||
| if (private$validate_params) { | ||
| private$validate_inputs(S, K, T, sigma) | ||
| } | ||
|
|
||
| d1 <- private$calculate_d1(S, K, T, sigma) | ||
| d2 <- private$calculate_d2(d1, sigma, T) | ||
|
|
||
| # Calculate Greeks | ||
| delta <- stats::pnorm(d1) - 1 | ||
| gamma <- stats::dnorm(d1) / (S * sigma * sqrt(T)) | ||
| theta <- (-S * stats::dnorm(d1) * sigma / (2 * sqrt(T)) + | ||
| private$risk_free_rate * K * exp(-private$risk_free_rate * T) * stats::pnorm(-d2)) | ||
| vega <- S * sqrt(T) * stats::dnorm(d1) | ||
| rho <- -K * T * exp(-private$risk_free_rate * T) * stats::pnorm(-d2) | ||
|
|
||
| return(list( | ||
| delta = delta, | ||
| gamma = gamma, | ||
| theta = theta, | ||
| vega = vega, | ||
| rho = rho | ||
| )) | ||
| }, | ||
|
|
||
| #' @description Estimate implied volatility using Newton-Raphson method | ||
| #' @param market_price Observed market price of the option | ||
| #' @param S Current stock price | ||
| #' @param K Strike price | ||
| #' @param T Time to expiration (in years) | ||
| #' @param is_call Whether the option is a call (TRUE) or put (FALSE) | ||
| #' @param tolerance Convergence tolerance | ||
| #' @param max_iter Maximum iterations | ||
| estimate_implied_volatility = function(market_price, S, K, T, | ||
| is_call = TRUE, tolerance = 1e-5, max_iter = 100) { | ||
| if (private$validate_params) { | ||
| if (market_price <= 0) stop("Market price must be positive") | ||
| private$validate_inputs(S, K, T, 0.5) # Initial volatility check | ||
| } | ||
|
|
||
| # Initial guess for volatility | ||
| sigma <- sqrt(2 * abs(log(S/K) + private$risk_free_rate * T) / T) | ||
| sigma <- min(max(0.1, sigma), 5) # Bound initial guess | ||
|
|
||
| for (i in 1:max_iter) { | ||
| # Calculate price and vega | ||
| if (is_call) { | ||
| price <- self$calculate_call_price(S, K, T, sigma) | ||
| greeks <- self$calculate_call_greeks(S, K, T, sigma) | ||
| } else { | ||
| price <- self$calculate_put_price(S, K, T, sigma) | ||
| greeks <- self$calculate_put_greeks(S, K, T, sigma) | ||
| } | ||
|
|
||
| diff <- price - market_price | ||
|
|
||
| if (abs(diff) < tolerance) { | ||
| return(sigma) | ||
| } | ||
|
|
||
| # Update volatility estimate using Newton-Raphson | ||
| sigma <- sigma - diff / greeks$vega | ||
|
|
||
| # Bound the volatility | ||
| sigma <- min(max(0.001, sigma), 5) | ||
| } | ||
|
|
||
| warning("Implied volatility did not converge") | ||
| return(sigma) | ||
| } | ||
| ), | ||
|
|
||
| private = list( | ||
| risk_free_rate = NULL, | ||
| validate_params = NULL, | ||
|
|
||
| calculate_d1 = function(S, K, T, sigma) { | ||
| (log(S/K) + (private$risk_free_rate + sigma^2/2) * T) / (sigma * sqrt(T)) | ||
| }, | ||
|
|
||
| calculate_d2 = function(d1, sigma, T) { | ||
| d1 - sigma * sqrt(T) | ||
| }, | ||
|
|
||
| validate_inputs = function(S, K, T, sigma) { | ||
| if (S <= 0) stop("Stock price must be positive") | ||
| if (K <= 0) stop("Strike price must be positive") | ||
| if (T <= 0) stop("Time to expiration must be positive") | ||
| if (sigma <= 0) stop("Volatility must be positive") | ||
| } | ||
| ) | ||
| ) | ||
|
|
||
| # Demonstration | ||
| demonstrate_black_scholes <- function() { | ||
| cat("=== Black-Scholes Option Pricing Demo ===\n\n") | ||
|
|
||
| # Initialize calculator | ||
| bs <- BlackScholesCalculator$new(r = 0.05) | ||
|
|
||
| # Example parameters | ||
| S <- 100 # Current stock price | ||
| K <- 100 # Strike price | ||
| T <- 1 # One year to expiration | ||
| sigma <- 0.2 # 20% volatility | ||
|
|
||
| # Calculate option prices | ||
| call_price <- bs$calculate_call_price(S, K, T, sigma) | ||
| put_price <- bs$calculate_put_price(S, K, T, sigma) | ||
|
|
||
| cat("Parameters:\n") | ||
| cat(sprintf("Stock Price: $%.2f\n", S)) | ||
| cat(sprintf("Strike Price: $%.2f\n", K)) | ||
| cat(sprintf("Time to Expiration: %.1f years\n", T)) | ||
| cat(sprintf("Volatility: %.1f%%\n", sigma * 100)) | ||
| cat(sprintf("Risk-free Rate: %.1f%%\n\n", bs$risk_free_rate * 100)) | ||
|
|
||
| cat("Option Prices:\n") | ||
| cat(sprintf("Call Option: $%.2f\n", call_price)) | ||
| cat(sprintf("Put Option: $%.2f\n\n", put_price)) | ||
|
|
||
| # Calculate and display Greeks | ||
| call_greeks <- bs$calculate_call_greeks(S, K, T, sigma) | ||
| put_greeks <- bs$calculate_put_greeks(S, K, T, sigma) | ||
|
|
||
| cat("Call Option Greeks:\n") | ||
| cat(sprintf("Delta: %.4f\n", call_greeks$delta)) | ||
| cat(sprintf("Gamma: %.4f\n", call_greeks$gamma)) | ||
| cat(sprintf("Theta: %.4f\n", call_greeks$theta)) | ||
| cat(sprintf("Vega: %.4f\n", call_greeks$vega)) | ||
| cat(sprintf("Rho: %.4f\n\n", call_greeks$rho)) | ||
|
|
||
| cat("Put Option Greeks:\n") | ||
| cat(sprintf("Delta: %.4f\n", put_greeks$delta)) | ||
| cat(sprintf("Gamma: %.4f\n", put_greeks$gamma)) | ||
| cat(sprintf("Theta: %.4f\n", put_greeks$theta)) | ||
| cat(sprintf("Vega: %.4f\n", put_greeks$vega)) | ||
| cat(sprintf("Rho: %.4f\n\n", put_greeks$rho)) | ||
|
|
||
| # Demonstrate implied volatility calculation | ||
| test_market_price <- call_price * 1.1 # Use 10% higher price for demonstration | ||
| implied_vol <- bs$estimate_implied_volatility(test_market_price, S, K, T, is_call = TRUE) | ||
| cat("Implied Volatility Estimation:\n") | ||
| cat(sprintf("Market Price: $%.2f\n", test_market_price)) | ||
| cat(sprintf("Implied Volatility: %.1f%%\n", implied_vol * 100)) | ||
|
|
||
| cat("\n=== Demo Complete ===\n") | ||
| } | ||
|
|
||
| # Run demonstration if not in interactive mode | ||
| if (!interactive()) { | ||
| demonstrate_black_scholes() | ||
| } | ||
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Uh oh!
There was an error while loading. Please reload this page.