-
-
Notifications
You must be signed in to change notification settings - Fork 343
[FEATURE] Add Jump Search Algorithm Implementation in R #216
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
siriak
merged 3 commits into
TheAlgorithms:master
from
iampratik13:feature/jump-search-r
Oct 14, 2025
Merged
Changes from all commits
Commits
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,287 @@ | ||
| # Jump Search Algorithm Implementation in R | ||
| # An efficient search algorithm for sorted arrays | ||
| # Works by jumping ahead by fixed steps then performing linear search | ||
| # Time complexity: O(√n) where n is the array length | ||
| # Space complexity: O(1) | ||
|
|
||
| library(R6) | ||
|
|
||
| #' JumpSearch Class | ||
| #' @description R6 class implementing the Jump Search algorithm | ||
| #' @details Jump Search is a searching algorithm for sorted arrays that works by: | ||
| #' 1. Dividing the array into blocks of size √n | ||
| #' 2. Jumping ahead by √n steps until finding a block where target might be | ||
| #' 3. Performing linear search within that block | ||
| #' Advantages: | ||
| #' - Better than linear search: O(√n) vs O(n) | ||
| #' - Better for systems with slow backward iteration compared to binary search | ||
| #' - Simple implementation | ||
| #' Limitations: | ||
| #' - Requires sorted array | ||
| #' - Slower than binary search: O(√n) vs O(log n) | ||
| JumpSearch <- R6Class( | ||
| "JumpSearch", | ||
|
|
||
| public = list( | ||
| #' @description Initialize Jump Search | ||
| #' @param data Sorted array to search in | ||
| #' @param validate_sorted Whether to validate if array is sorted | ||
| initialize = function(data = NULL, validate_sorted = TRUE) { | ||
| if (!is.null(data)) { | ||
| private$validate_input(data, validate_sorted) | ||
| self$data <- data | ||
| private$n <- length(data) | ||
| private$optimal_jump <- floor(sqrt(private$n)) | ||
| } | ||
| invisible(self) | ||
| }, | ||
|
|
||
| #' @description Search for a target value in the array | ||
| #' @param target Value to search for | ||
| #' @param jump_size Optional custom jump size (default: √n) | ||
| #' @return List containing index, number of comparisons, and success status | ||
| search = function(target, jump_size = NULL) { | ||
| if (is.null(self$data)) { | ||
| stop("No data available. Please initialize with data first.") | ||
| } | ||
|
|
||
| # Use custom jump size or optimal jump size | ||
| step <- if (is.null(jump_size)) private$optimal_jump else jump_size | ||
|
|
||
| if (step <= 0 || step != round(step)) { | ||
| stop("Jump size must be a positive integer") | ||
| } | ||
|
|
||
| prev <- 0 | ||
| comparisons <- 0 | ||
|
|
||
| # Jump through array to find the block where target might be | ||
| while (step <= private$n && self$data[step] < target) { | ||
| comparisons <- comparisons + 1 | ||
| prev <- step | ||
| step <- step + private$optimal_jump | ||
iampratik13 marked this conversation as resolved.
Show resolved
Hide resolved
|
||
| } | ||
|
|
||
| # If we've jumped past the end, adjust step to not exceed n | ||
| if (prev >= private$n) { | ||
| return(list( | ||
| index = -1, | ||
| comparisons = comparisons, | ||
| found = FALSE | ||
| )) | ||
| } | ||
|
|
||
| # Linear search in the identified block | ||
| while ((prev + 1) <= private$n && self$data[prev + 1] <= target) { | ||
| comparisons <- comparisons + 1 | ||
| prev <- prev + 1 | ||
|
|
||
| if (self$data[prev] == target) { | ||
| return(list( | ||
| index = prev, | ||
| comparisons = comparisons, | ||
| found = TRUE | ||
| )) | ||
| } | ||
| } | ||
|
|
||
| # Target not found | ||
| return(list( | ||
| index = -1, | ||
| comparisons = comparisons, | ||
| found = FALSE | ||
| )) | ||
| }, | ||
|
|
||
| #' @description Search for multiple targets | ||
| #' @param targets Vector of values to search for | ||
| #' @return List of search results for each target | ||
| search_multiple = function(targets) { | ||
| if (!is.numeric(targets)) { | ||
| stop("Targets must be numeric") | ||
| } | ||
|
|
||
| results <- list() | ||
| for (i in seq_along(targets)) { | ||
| results[[i]] <- self$search(targets[i]) | ||
| results[[i]]$target <- targets[i] | ||
| } | ||
| return(results) | ||
| }, | ||
|
|
||
| #' @description Find the optimal jump size for the current data | ||
| #' @return Optimal jump size (√n) | ||
| get_optimal_jump_size = function() { | ||
| if (is.null(self$data)) { | ||
| stop("No data available. Please initialize with data first.") | ||
| } | ||
| return(private$optimal_jump) | ||
| }, | ||
|
|
||
| #' @description Compare performance with different jump sizes | ||
| #' @param target Value to search for | ||
| #' @param jump_sizes Vector of jump sizes to test | ||
| #' @return Data frame with performance comparison | ||
| compare_jump_sizes = function(target, jump_sizes = NULL) { | ||
| if (is.null(self$data)) { | ||
| stop("No data available. Please initialize with data first.") | ||
| } | ||
|
|
||
| if (is.null(jump_sizes)) { | ||
| jump_sizes <- c( | ||
| floor(sqrt(private$n) / 2), | ||
| private$optimal_jump, | ||
| floor(sqrt(private$n) * 2) | ||
iampratik13 marked this conversation as resolved.
Show resolved
Hide resolved
|
||
| ) | ||
| } | ||
|
|
||
| results <- data.frame( | ||
| jump_size = numeric(), | ||
| comparisons = numeric(), | ||
| found = logical(), | ||
| stringsAsFactors = FALSE | ||
| ) | ||
|
|
||
| for (size in jump_sizes) { | ||
| if (size > 0 && size <= private$n) { | ||
| result <- self$search(target, jump_size = size) | ||
| results <- rbind(results, data.frame( | ||
| jump_size = size, | ||
| comparisons = result$comparisons, | ||
| found = result$found | ||
| )) | ||
| } | ||
| } | ||
|
|
||
| return(results) | ||
| }, | ||
|
|
||
| #' @description Update the data array | ||
| #' @param new_data New sorted array | ||
| #' @param validate_sorted Whether to validate if array is sorted | ||
| update_data = function(new_data, validate_sorted = TRUE) { | ||
| private$validate_input(new_data, validate_sorted) | ||
| self$data <- new_data | ||
| private$n <- length(new_data) | ||
| private$optimal_jump <- floor(sqrt(private$n)) | ||
| invisible(self) | ||
| }, | ||
|
|
||
| # Public fields | ||
| data = NULL | ||
| ), | ||
|
|
||
| private = list( | ||
| n = NULL, | ||
| optimal_jump = NULL, | ||
|
|
||
| validate_input = function(data, check_sorted) { | ||
| if (!is.numeric(data)) { | ||
| stop("Input data must be numeric") | ||
| } | ||
| if (any(is.na(data))) { | ||
| stop("Input data contains missing values") | ||
| } | ||
| if (length(data) == 0) { | ||
| stop("Input data cannot be empty") | ||
| } | ||
| if (check_sorted && !private$is_sorted(data)) { | ||
| stop("Input data must be sorted in ascending order") | ||
| } | ||
| }, | ||
|
|
||
| is_sorted = function(data) { | ||
| all(diff(data) >= 0) | ||
| } | ||
| ) | ||
| ) | ||
|
|
||
| # Demonstration | ||
| demonstrate_jump_search <- function() { | ||
| cat("=== Jump Search Algorithm Demo ===\n\n") | ||
|
|
||
| # Example 1: Basic usage | ||
| cat("Example 1: Basic jump search\n") | ||
| data <- c(1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29) | ||
| cat("Sorted array:", paste(data, collapse = ", "), "\n") | ||
|
|
||
| js <- JumpSearch$new(data) | ||
| cat(sprintf("Array size: %d, Optimal jump size: %d\n\n", | ||
| length(data), js$get_optimal_jump_size())) | ||
|
|
||
| targets <- c(7, 19, 30) | ||
| for (target in targets) { | ||
| result <- js$search(target) | ||
| if (result$found) { | ||
| cat(sprintf("Target %d found at index %d (comparisons: %d)\n", | ||
| target, result$index, result$comparisons)) | ||
| } else { | ||
| cat(sprintf("Target %d not found (comparisons: %d)\n", | ||
| target, result$comparisons)) | ||
| } | ||
| } | ||
|
|
||
| # Example 2: Larger dataset | ||
| cat("\nExample 2: Larger dataset\n") | ||
| set.seed(42) | ||
| large_data <- sort(sample(1:1000, 100)) | ||
| js2 <- JumpSearch$new(large_data) | ||
|
|
||
| cat(sprintf("Array size: %d, Optimal jump size: %d\n", | ||
| length(large_data), js2$get_optimal_jump_size())) | ||
|
|
||
| search_targets <- c(large_data[25], large_data[75], 999) | ||
| results <- js2$search_multiple(search_targets) | ||
|
|
||
| cat("\nMultiple search results:\n") | ||
| for (i in seq_along(results)) { | ||
| res <- results[[i]] | ||
| cat(sprintf("Target %d: %s (index: %d, comparisons: %d)\n", | ||
| res$target, | ||
| ifelse(res$found, "Found", "Not found"), | ||
| res$index, | ||
| res$comparisons)) | ||
| } | ||
|
|
||
| # Example 3: Jump size comparison | ||
| cat("\nExample 3: Comparing different jump sizes\n") | ||
| test_data <- 1:100 | ||
| js3 <- JumpSearch$new(test_data) | ||
| target <- 87 | ||
|
|
||
| comparison <- js3$compare_jump_sizes(target) | ||
| cat(sprintf("Searching for %d in array of size %d:\n\n", target, length(test_data))) | ||
| print(comparison) | ||
|
|
||
| # Example 4: Performance analysis | ||
| cat("\nExample 4: Performance analysis\n") | ||
| sizes <- c(100, 1000, 10000) | ||
|
|
||
| cat("Average comparisons for different array sizes:\n") | ||
| for (n in sizes) { | ||
| test_array <- 1:n | ||
| js_test <- JumpSearch$new(test_array) | ||
|
|
||
| # Test multiple searches | ||
| num_tests <- 20 | ||
| total_comps <- 0 | ||
| for (i in 1:num_tests) { | ||
| target <- sample(test_array, 1) | ||
| result <- js_test$search(target) | ||
| total_comps <- total_comps + result$comparisons | ||
| } | ||
|
|
||
| avg_comps <- total_comps / num_tests | ||
| theoretical_bound <- sqrt(n) | ||
|
|
||
| cat(sprintf("n = %5d: Avg comparisons = %.1f, Theoretical O(√n) = %.1f\n", | ||
| n, avg_comps, theoretical_bound)) | ||
| } | ||
|
|
||
| cat("\n=== Demo Complete ===\n") | ||
| } | ||
|
|
||
| # Run demonstration if not in interactive mode | ||
| if (!interactive()) { | ||
| demonstrate_jump_search() | ||
| } | ||
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Uh oh!
There was an error while loading. Please reload this page.