Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
214 changes: 214 additions & 0 deletions graph_algorithms/johnson_shortest_paths.r
Original file line number Diff line number Diff line change
@@ -0,0 +1,214 @@
# Johnson's All-Pairs Shortest Paths Algorithm
#
# Johnson's algorithm computes shortest paths between all pairs of vertices
# in a sparse, weighted directed graph that may have negative edge weights
# (but no negative cycles). It reweights edges using Bellman-Ford to remove
# negative weights and then runs Dijkstra from each vertex.
#
# Time Complexity: O(V * E + V * (E log V)) with a binary heap priority queue
# Space Complexity: O(V + E)
#
# Graph representation matches other files in this folder:
# - Adjacency list: a named list where each name is a vertex index as a string
# - Each entry is a list of edges: list(vertex = <int>, weight = <numeric>)

# ----------------------------
# Priority Queue (simple) API
# ----------------------------
create_priority_queue <- function() {
list(
elements = data.frame(vertex = integer(0), distance = numeric(0)),
size = 0
)
}

pq_insert <- function(pq, vertex, distance) {
pq$elements <- rbind(pq$elements, data.frame(vertex = vertex, distance = distance))
pq$size <- pq$size + 1
return(pq)
}

pq_extract_min <- function(pq) {
if (pq$size == 0) {
return(list(pq = pq, min_element = NULL))
}
min_idx <- which.min(pq$elements$distance)
min_element <- pq$elements[min_idx, ]
pq$elements <- pq$elements[-min_idx, ]
pq$size <- pq$size - 1
return(list(pq = pq, min_element = min_element))
}

pq_is_empty <- function(pq) {
return(pq$size == 0)
}

# -----------------------------------------------
# Bellman-Ford potentials (no explicit supersource)
# -----------------------------------------------
# Equivalent to adding a new super-source s with 0-weight edges to all vertices,
# by initializing h[i] = 0 for all i and relaxing edges (V-1) times.
bellman_ford_potentials <- function(graph) {
# Collect all vertices appearing as sources or targets
all_vertices <- unique(c(names(graph), unlist(lapply(graph, function(x) sapply(x, function(e) e$vertex)))))
all_vertices <- as.numeric(all_vertices)
V <- max(all_vertices)

# Initialize h with zeros (super-source trick)
h <- rep(0, V)

# Relax edges V-1 times
for (i in 1:(V - 1)) {
updated <- FALSE
for (u_char in as.character(1:V)) {
if (!(u_char %in% names(graph))) next
u <- as.numeric(u_char)
for (edge in graph[[u_char]]) {
v <- edge$vertex
w <- edge$weight
if (h[u] + w < h[v]) {
h[v] <- h[u] + w
updated <- TRUE
}
}
}
if (!updated) break
}

# Check for negative-weight cycles
negative_cycle <- FALSE
for (u_char in as.character(1:V)) {
if (!(u_char %in% names(graph))) next
u <- as.numeric(u_char)
for (edge in graph[[u_char]]) {
v <- edge$vertex
w <- edge$weight
if (h[u] + w < h[v]) {
negative_cycle <- TRUE
break
}
}
if (negative_cycle) break
}

list(h = h, V = V, negative_cycle = negative_cycle)
}

# ---------------------------
# Dijkstra on reweighted graph
# ---------------------------
dijkstra_on_adj <- function(graph, source, V) {
distances <- rep(Inf, V)
previous <- rep(-1, V)
visited <- rep(FALSE, V)

distances[source] <- 0
pq <- create_priority_queue()
pq <- pq_insert(pq, source, 0)

while (!pq_is_empty(pq)) {
res <- pq_extract_min(pq)
pq <- res$pq
cur <- res$min_element
if (is.null(cur)) break

u <- cur$vertex
if (visited[u]) next
visited[u] <- TRUE

u_char <- as.character(u)
if (u_char %in% names(graph)) {
for (edge in graph[[u_char]]) {
v <- edge$vertex
w <- edge$weight
if (!visited[v] && distances[u] + w < distances[v]) {
distances[v] <- distances[u] + w
previous[v] <- u
pq <- pq_insert(pq, v, distances[v])
}
}
}
}

list(distances = distances, previous = previous)
}

# ---------------------
# Johnson's main driver
# ---------------------
johnson_shortest_paths <- function(graph) {
# Ensure all vertices 1..V exist as keys (even if empty list)
all_vertices <- unique(c(names(graph), unlist(lapply(graph, function(x) sapply(x, function(e) e$vertex)))))
all_vertices <- as.numeric(all_vertices)
V <- max(all_vertices)
for (u in as.character(1:V)) {
if (!(u %in% names(graph))) graph[[u]] <- list()
}

# Step 1: Bellman-Ford to get potentials h
bf <- bellman_ford_potentials(graph)
if (bf$negative_cycle) {
return(list(
distances = NULL,
negative_cycle = TRUE,
message = "Graph contains a negative-weight cycle; shortest paths undefined"
))
}
h <- bf$h

# Step 2: Reweight edges to eliminate negative weights
reweighted <- vector("list", V)
names(reweighted) <- as.character(1:V)
for (i in 1:V) reweighted[[i]] <- list()
for (u_char in as.character(1:V)) {
u <- as.numeric(u_char)
for (edge in graph[[u_char]]) {
v <- edge$vertex
w <- edge$weight
w_prime <- w + h[u] - h[v]
reweighted[[u_char]] <- append(reweighted[[u_char]], list(list(vertex = v, weight = w_prime)))
}
}

# Step 3: Run Dijkstra from each vertex on the reweighted graph
dist_matrix <- matrix(Inf, nrow = V, ncol = V)
for (s in 1:V) {
dj <- dijkstra_on_adj(reweighted, s, V)
# Convert distances back to original weights
for (v in 1:V) {
if (!is.infinite(dj$distances[v])) {
dist_matrix[s, v] <- dj$distances[v] - h[s] + h[v]
}
}
}

list(
distances = dist_matrix,
negative_cycle = FALSE
)
}

# -----------------
# Example / Demo
# -----------------
cat("=== Johnson's All-Pairs Shortest Paths Algorithm ===\n")

# Convert the Java example (0-based) to 1-based indices used here
# Java edges:
# 0->1(3), 0->2(8), 0->4(-4), 1->3(1), 1->4(7), 2->1(4), 3->0(2), 3->2(-5), 4->3(6)
j_graph <- list(
"1" = list(list(vertex = 2, weight = 3), list(vertex = 3, weight = 8), list(vertex = 5, weight = -4)),
"2" = list(list(vertex = 4, weight = 1), list(vertex = 5, weight = 7)),
"3" = list(list(vertex = 2, weight = 4)),
"4" = list(list(vertex = 1, weight = 2), list(vertex = 3, weight = -5)),
"5" = list(list(vertex = 4, weight = 6))
)

cat("Running Johnson on 5-vertex graph (with negative edges, no negative cycles) ...\n")
j_res <- johnson_shortest_paths(j_graph)
if (isTRUE(j_res$negative_cycle)) {
cat("Negative cycle detected. Shortest paths undefined.\n")
} else {
cat("All-pairs shortest path distance matrix (rows = sources, cols = targets):\n")
print(j_res$distances)
}