Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
222 changes: 222 additions & 0 deletions dynamic_programming/travelingSalesman_bitmask.r
Original file line number Diff line number Diff line change
@@ -0,0 +1,222 @@
# Traveling Salesman Problem (TSP) using Bitmask Dynamic Programming
#
# The Traveling Salesman Problem finds the shortest possible route that visits
# each city exactly once and returns to the starting city. This implementation
# uses bitmask DP to efficiently track visited cities.
#
# Time Complexity: O(n² * 2^n) where n = number of cities
# Space Complexity: O(n * 2^n) for memoization table
#
# Applications:
# - Route optimization and logistics
# - Circuit board drilling and manufacturing
# - DNA sequencing and genome mapping
# - Network design and optimization
# - Scheduling and planning problems
# - Microchip design and fabrication

# Main TSP function using bitmask DP
tsp_bitmask_dp <- function(dist) {
#' Solve the Traveling Salesman Problem using Bitmask Dynamic Programming
#' @param dist: 2D matrix where dist[i, j] is the distance from city i to city j
#' @return: Minimum cost to visit all cities and return to starting city

n <- nrow(dist)

# Bitmask when all cities are visited
ALL_VISITED <- bitwShiftL(1, n) - 1

# Initialize memoization table
# memo[pos, mask] = minimum cost starting from pos with visited cities in mask
memo <- matrix(NA, nrow = n, ncol = bitwShiftL(1, n))

# Recursive DP helper function
dp <- function(mask, pos) {
#' Recursive DP function to compute minimum travel cost
#' @param mask: Bitmask representing visited cities
#' @param pos: Current city position (0-indexed)
#' @return: Minimum travel cost from current state

# Base case: all cities visited, return to starting city (city 0)
if (mask == ALL_VISITED) {
return(dist[pos + 1, 1])
}

# Check memoization table
if (!is.na(memo[pos + 1, mask + 1])) {
return(memo[pos + 1, mask + 1])
}

# Initialize minimum cost as infinity
min_cost <- Inf

# Try visiting each unvisited city
for (city in 0:(n - 1)) {
# Check if city is not visited (bit is 0)
if (bitwAnd(mask, bitwShiftL(1, city)) == 0) {
# Mark city as visited
new_mask <- bitwOr(mask, bitwShiftL(1, city))
# Calculate cost: distance to city + cost from city
cost <- dist[pos + 1, city + 1] + dp(new_mask, city)
min_cost <- min(min_cost, cost)
}
}

# Store result in memo table
memo[pos + 1, mask + 1] <<- min_cost
return(min_cost)
}

# Start from city 0 with only city 0 visited (mask = 1)
result <- dp(1, 0)
return(result)
}

# Function to get the optimal path (with path reconstruction)
tsp_bitmask_with_path <- function(dist) {
#' Solve TSP and return both minimum cost and the optimal path
#' @param dist: 2D distance matrix
#' @return: List containing minimum cost and optimal path

n <- nrow(dist)
ALL_VISITED <- bitwShiftL(1, n) - 1

# Memoization tables
memo <- matrix(NA, nrow = n, ncol = bitwShiftL(1, n))
parent <- matrix(NA, nrow = n, ncol = bitwShiftL(1, n))

# DP function with path tracking
dp <- function(mask, pos) {
if (mask == ALL_VISITED) {
return(dist[pos + 1, 1])
}

if (!is.na(memo[pos + 1, mask + 1])) {
return(memo[pos + 1, mask + 1])
}

min_cost <- Inf
best_city <- -1

for (city in 0:(n - 1)) {
if (bitwAnd(mask, bitwShiftL(1, city)) == 0) {
new_mask <- bitwOr(mask, bitwShiftL(1, city))
cost <- dist[pos + 1, city + 1] + dp(new_mask, city)
if (cost < min_cost) {
min_cost <- cost
best_city <- city
}
}
}

memo[pos + 1, mask + 1] <<- min_cost
parent[pos + 1, mask + 1] <<- best_city
return(min_cost)
}

# Get minimum cost
min_cost <- dp(1, 0)

# Reconstruct path
path <- c(0) # Start at city 0
mask <- 1
pos <- 0

while (mask != ALL_VISITED) {
next_city <- parent[pos + 1, mask + 1]
path <- c(path, next_city)
mask <- bitwOr(mask, bitwShiftL(1, next_city))
pos <- next_city
}

path <- c(path, 0) # Return to starting city

return(list(
min_cost = min_cost,
path = path,
path_cities = path + 1 # Convert to 1-indexed for display
))
}

# Helper function to print distance matrix
print_distance_matrix <- function(dist) {
#' Print a formatted distance matrix
#' @param dist: Distance matrix to print

n <- nrow(dist)
cat("Distance Matrix:\n")
cat(" ")
for (j in 1:n) {
cat(sprintf("C%-3d ", j))
}
cat("\n")

for (i in 1:n) {
cat(sprintf("C%-3d ", i))
for (j in 1:n) {
cat(sprintf("%-4d ", dist[i, j]))
}
cat("\n")
}
cat("\n")
}

# ========== Example Usage ==========

# Example 1: Small 4-city problem
cat("========== Example 1: 4 Cities ==========\n\n")
dist_matrix_1 <- matrix(c(
0, 10, 15, 20,
10, 0, 35, 25,
15, 35, 0, 30,
20, 25, 30, 0
), nrow = 4, byrow = TRUE)

print_distance_matrix(dist_matrix_1)

min_cost_1 <- tsp_bitmask_dp(dist_matrix_1)
cat(sprintf("Minimum cost to visit all cities: %d\n\n", min_cost_1))

# Get path as well
result_1 <- tsp_bitmask_with_path(dist_matrix_1)
cat(sprintf("Optimal path: %s\n", paste(result_1$path_cities, collapse = " -> ")))
cat(sprintf("Total cost: %d\n\n", result_1$min_cost))

# Example 2: Another 4-city problem
cat("========== Example 2: Another 4-City Problem ==========\n\n")
dist_matrix_2 <- matrix(c(
0, 20, 42, 35,
20, 0, 30, 34,
42, 30, 0, 12,
35, 34, 12, 0
), nrow = 4, byrow = TRUE)

print_distance_matrix(dist_matrix_2)

result_2 <- tsp_bitmask_with_path(dist_matrix_2)
cat(sprintf("Optimal path: %s\n", paste(result_2$path_cities, collapse = " -> ")))
cat(sprintf("Total cost: %d\n\n", result_2$min_cost))

# Example 3: Small 5-city problem
cat("========== Example 3: 5 Cities ==========\n\n")
dist_matrix_3 <- matrix(c(
0, 12, 10, 19, 8,
12, 0, 3, 7, 6,
10, 3, 0, 2, 20,
19, 7, 2, 0, 4,
8, 6, 20, 4, 0
), nrow = 5, byrow = TRUE)

print_distance_matrix(dist_matrix_3)

result_3 <- tsp_bitmask_with_path(dist_matrix_3)
cat(sprintf("Optimal path: %s\n", paste(result_3$path_cities, collapse = " -> ")))
cat(sprintf("Total cost: %d\n\n", result_3$min_cost))

# Performance note
cat("========== Performance Note ==========\n")
cat("This algorithm works well for small n (typically n <= 20).\n")
cat("For larger instances, consider:\n")
cat(" - Heuristic approaches (Nearest Neighbor, 2-opt)\n")
cat(" - Approximation algorithms (Christofides algorithm)\n")
cat(" - Metaheuristics (Genetic Algorithms, Simulated Annealing)\n")