Skip to content

Theis-Mathiassen/TrajectoryVisual

Repository files navigation

TrajectoryVisual

Our P8 project about visualizing simplified trajectories.

Setup

Run directly or use docker (Or other containerization tool)

  1. Install uv: pip install uv
  2. Run uv sync to set up the environment
  3. Download the dataset:
  4. (Optionally get the pickle files)
  5. Run uv run main.py to execute

Using Docker

Make sure docker engine is installed: https://docs.docker.com/engine/install/ Prepare the folder by getting the dataset, and optionally the pickle files. Then build the image:

docker build -t trajectory .

Create and run a container:

docker run -dit -e JOB_OUTPUT_DIR=/results/{This runs output directory} --rm --mount type=bind,src=./results/,dst=/results/ trajectory {Command line arguments}

Example:

docker run -dit -e JOB_OUTPUT_DIR=/results/0 --rm --mount type=bind,src=./results/,dst=/results/ trajectory --knn 1 --range 1 --similarity c

The run commands can be generated by running the helper script: generate_grid_search_commands.py

uv run generate_grid_search_commands.py

About

Our P8 project about visualizing simplified trajectories.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 6