Our P8 project about visualizing simplified trajectories.
Run directly or use docker (Or other containerization tool)
- Install uv:
pip install uv - Run
uv syncto set up the environment - Download the dataset:
- Go to: https://www.kaggle.com/datasets/crailtap/taxi-trajectory
- Download train.csv (Login required)
- Extract the files to the datasets folder within the repository
- Copy the first 101 lines into a csv file called small_train.csv
- (Optionally get the pickle files)
- Run
uv run main.pyto execute
Make sure docker engine is installed: https://docs.docker.com/engine/install/ Prepare the folder by getting the dataset, and optionally the pickle files. Then build the image:
docker build -t trajectory .
Create and run a container:
docker run -dit -e JOB_OUTPUT_DIR=/results/{This runs output directory} --rm --mount type=bind,src=./results/,dst=/results/ trajectory {Command line arguments}
Example:
docker run -dit -e JOB_OUTPUT_DIR=/results/0 --rm --mount type=bind,src=./results/,dst=/results/ trajectory --knn 1 --range 1 --similarity c
The run commands can be generated by running the helper script: generate_grid_search_commands.py
uv run generate_grid_search_commands.py