ART 1.3.2
This release of ART 1.3.2 provides updates to ART 1.3.1.
Added
- Added verbose parameter for
CarliniL2Method,CarliniLInfMethod, andDeepFoolattacks to disable progress bars.
Changed
- Changed the
Wassersteinattack to support rectangular images as input (#527) - Changed
UniversalPerturbationattack to use true labels if provided in internal attacks (#526) - Allow
Noneas input for parameter `preprocessing of estimators (#493) - Allow
epsto be larger thaneps_stepinProjectedGradientDescentattacks if norm is notnp.inf(#495)
Removed
[None]
Fixed
- Fixed import path for
ProjectedGradientDescendoption inUniversalPerturbationattack (#525) - Fixed support for arrays as
clip_valuesinProjectedGradientDescentPyTorchattack for PyTorch (#521) - Fixed success criteria for targeted attacks with
AutoProjectedGradientDescend(#513) - Fixed success criteria for attacks used in
AutoAttack(#508) - Fixed example for Fast-is-better-than-Free adversarial training (#506)
- Fixed dtype in
AutoProjectedGradientDescentandSquareAttackfor testing output type of estimator (#499) - Fixed parameters in
_augment_images_with_patchcalls of attackDPatch(#493)