Skip to content
Merged
Show file tree
Hide file tree
Changes from 6 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
10 changes: 6 additions & 4 deletions Project.toml
Original file line number Diff line number Diff line change
@@ -1,9 +1,10 @@
name = "AdvancedMH"
uuid = "5b7e9947-ddc0-4b3f-9b55-0d8042f74170"
version = "0.8.3"
version = "0.8.4"

[deps]
AbstractMCMC = "80f14c24-f653-4e6a-9b94-39d6b0f70001"
BangBang = "198e06fe-97b7-11e9-32a5-e1d131e6ad66"
Distributions = "31c24e10-a181-5473-b8eb-7969acd0382f"
FillArrays = "1a297f60-69ca-5386-bcde-b61e274b549b"
LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
Expand All @@ -23,18 +24,19 @@ AdvancedMHMCMCChainsExt = "MCMCChains"
AdvancedMHStructArraysExt = "StructArrays"

[compat]
AbstractMCMC = "5"
AbstractMCMC = "5.6"
BangBang = "0.3.19, 0.4"
DiffResults = "1"
Distributions = "0.25"
FillArrays = "1"
ForwardDiff = "0.10"
LinearAlgebra = "1.6"
LogDensityProblems = "2"
MCMCChains = "6.0.4"
Random = "1.6"
Requires = "1"
StructArrays = "0.6"
julia = "1.6"
LinearAlgebra = "1.6"
Random = "1.6"

[extras]
DiffResults = "163ba53b-c6d8-5494-b064-1a9d43ac40c5"
Expand Down
15 changes: 15 additions & 0 deletions src/AdvancedMH.jl
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,7 @@ module AdvancedMH

# Import the relevant libraries.
using AbstractMCMC
using BangBang
using Distributions
using LinearAlgebra: I
using FillArrays: Zeros
Expand Down Expand Up @@ -140,6 +141,20 @@ function __init__()
end
end

# AbstractMCMC.jl interface
function AbstractMCMC.getparams(t::Transition)
return t.params
end

# TODO (sunxd): remove `DensityModel` in favor of `AbstractMCMC.LogDensityModel`
function AbstractMCMC.setparams!!(model::DensityModelOrLogDensityModel, t::Transition, params)
return Transition(
params,
logdensity(model, params),
t.accepted
)
end

# Include inference methods.
include("proposal.jl")
include("mh-core.jl")
Expand Down
18 changes: 16 additions & 2 deletions src/MALA.jl
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@ MALA(d::RandomWalkProposal) = MALA{typeof(d)}(d)
MALA(d) = MALA(RandomWalkProposal(d))


struct GradientTransition{T<:Union{Vector, Real, NamedTuple}, L<:Real, G<:Union{Vector, Real, NamedTuple}} <: AbstractTransition
struct GradientTransition{T<:Union{Vector,Real,NamedTuple},L<:Real,G<:Union{Vector,Real,NamedTuple}} <: AbstractTransition
params::T
lp::L
gradient::G
Expand All @@ -20,6 +20,20 @@ end

logdensity(model::DensityModelOrLogDensityModel, t::GradientTransition) = t.lp

function AbstractMCMC.getparams(t::GradientTransition)
return t.params
end

function AbstractMCMC.setparams!!(model::DensityModelOrLogDensityModel, t::GradientTransition, params)
lp, gradient = logdensity_and_gradient(model, params)
return GradientTransition(
params,
lp,
gradient,
t.accepted
)
end

propose(::Random.AbstractRNG, ::MALA, ::DensityModelOrLogDensityModel) = error("please specify initial parameters")
function transition(sampler::MALA, model::DensityModelOrLogDensityModel, params, accepted)
return GradientTransition(params, logdensity_and_gradient(model, params)..., accepted)
Expand Down Expand Up @@ -88,6 +102,6 @@ logdensity_and_gradient(::DensityModelOrLogDensityModel, ::Any)
function logdensity_and_gradient(model::AbstractMCMC.LogDensityModel, params)
check_capabilities(model)
return LogDensityProblems.logdensity_and_gradient(model.logdensity, params)
end
end


22 changes: 21 additions & 1 deletion test/runtests.jl
Original file line number Diff line number Diff line change
@@ -1,4 +1,5 @@
using AdvancedMH
using AbstractMCMC
using DiffResults
using Distributions
using ForwardDiff
Expand Down Expand Up @@ -33,6 +34,25 @@ include("util.jl")
LogDensityProblems.logdensity(::typeof(density), θ) = density(θ)
LogDensityProblems.dimension(::typeof(density)) = 2

@testset "getparams/setparams!! (AbstractMCMC interface)" begin
t1, _ = AbstractMCMC.step(Random.default_rng(), model, StaticMH([Normal(0, 1), Normal(0, 1)]))
t2, _ = AbstractMCMC.step(Random.default_rng(), model, MALA(x -> MvNormal(x, I)); initial_params=ones(2))
for t in [t1, t2]
@test AbstractMCMC.getparams(model, t) == t.params

new_transition = AbstractMCMC.setparams!!(model, t, AbstractMCMC.getparams(model, t))
@test new_transition.lp == t.lp
@test new_transition.accepted == t.accepted
@test new_transition.params == t.params
if hasfield(typeof(t), :gradient)
@test new_transition.gradient == t.gradient
end

t_replaced = AbstractMCMC.setparams!!(model, t, [1.0, 2.0])
@test t_replaced.params == [1.0, 2.0]
end
end

@testset "StaticMH" begin
# Set up our sampler with initial parameters.
spl1 = StaticMH([Normal(0,1), Normal(0, 1)])
Expand Down Expand Up @@ -69,7 +89,7 @@ include("util.jl")
@test mean(chain1.σ) ≈ 1.0 atol=0.1
@test mean(chain2.μ) ≈ 0.0 atol=0.1
@test mean(chain2.σ) ≈ 1.0 atol=0.1
@test mean(chain3.μ) ≈ 0.0 atol=0.1
@test mean(chain3.μ) ≈ 0.0 atol=0.15
@test mean(chain3.σ) ≈ 1.0 atol=0.1
end

Expand Down
Loading