Skip to content
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
69 changes: 69 additions & 0 deletions test/ad.jl
Original file line number Diff line number Diff line change
Expand Up @@ -103,4 +103,73 @@ using DynamicPPL: LogDensityFunction
)
@test LogDensityProblems.logdensity_and_gradient(ldf, vi[:]) isa Any
end

# Test that various different ways of specifying array types as arguments work with all
# ADTypes.
@testset "Array argument types" begin
reference_adtype = AutoForwardDiff()
test_m = randn(2, 3)

function eval_logp_and_grad(model, m, adtype)
model_instance = model()
vi = VarInfo(model_instance)
ldf = LogDensityFunction(model_instance, vi, DefaultContext(); adtype=adtype)
return LogDensityProblems.logdensity_and_gradient(ldf, m[:])
end

@model function scalar_matrix_model(::Type{T}=Float64) where {T<:Real}
m = Matrix{T}(undef, 2, 3)
return m ~ filldist(MvNormal(zeros(2), I), 3)
end

scalar_matrix_model_reference = eval_logp_and_grad(
scalar_matrix_model, test_m, reference_adtype
)

@model function matrix_model(::Type{T}=Matrix{Float64}) where {T}
m = T(undef, 2, 3)
return m ~ filldist(MvNormal(zeros(2), I), 3)
end

matrix_model_reference = eval_logp_and_grad(matrix_model, test_m, reference_adtype)

@model function scalar_array_model(::Type{T}=Float64) where {T<:Real}
m = Array{T}(undef, 2, 3)
return m ~ filldist(MvNormal(zeros(2), I), 3)
end

scalar_array_model_reference = eval_logp_and_grad(
scalar_array_model, test_m, reference_adtype
)

@model function array_model(::Type{T}=Array{Float64}) where {T}
m = T(undef, 2, 3)
return m ~ filldist(MvNormal(zeros(2), I), 3)
end

array_model_reference = eval_logp_and_grad(array_model, test_m, reference_adtype)

@testset "$adtype" for adtype in [
AutoReverseDiff(; compile=false),
AutoReverseDiff(; compile=true),
AutoMooncake(; config=nothing),
]
scalar_matrix_model_logp_and_grad = eval_logp_and_grad(
scalar_matrix_model, test_m, adtype
)
@test scalar_matrix_model_logp_and_grad[1] ≈ scalar_matrix_model_reference[1]
@test scalar_matrix_model_logp_and_grad[2] ≈ scalar_matrix_model_reference[2]
matrix_model_logp_and_grad = eval_logp_and_grad(matrix_model, test_m, adtype)
@test matrix_model_logp_and_grad[1] ≈ matrix_model_reference[1]
@test matrix_model_logp_and_grad[2] ≈ matrix_model_reference[2]
scalar_array_model_logp_and_grad = eval_logp_and_grad(
scalar_array_model, test_m, adtype
)
@test scalar_array_model_logp_and_grad[1] ≈ scalar_array_model_reference[1]
@test scalar_array_model_logp_and_grad[2] ≈ scalar_array_model_reference[2]
array_model_logp_and_grad = eval_logp_and_grad(array_model, test_m, adtype)
@test array_model_logp_and_grad[1] ≈ array_model_reference[1]
@test array_model_logp_and_grad[2] ≈ array_model_reference[2]
end
end
end
14 changes: 14 additions & 0 deletions test/compiler.jl
Original file line number Diff line number Diff line change
Expand Up @@ -289,6 +289,20 @@ module Issue537 end
@test all((isassigned(x, i) for i in eachindex(x)))
end

# Test that that using @. to stop unwanted broadcasting on the RHS works.
@testset "@. ~ with interpolation" begin
@model function at_dot_with_interpolation()
x = Vector{Float64}(undef, 2)
# Without the interpolation the RHS would turn into `Normal.(sum.([1.0, 2.0]))`,
# which would crash.
@. x ~ $(Normal(sum([1.0, 2.0])))
end

# The main check is just that calling at_dot_with_interpolation() doesn't crash,
# the check of the keys is not very important.
@show keys(VarInfo(at_dot_with_interpolation())) == [@varname(x[1]), @varname(x[2])]
end

# A couple of uses of .~ that are no longer valid as of v0.35.
@testset "old .~ syntax" begin
@model function multivariate_dot_tilde()
Expand Down
Loading