-
Notifications
You must be signed in to change notification settings - Fork 228
Add DynamicPPL integration tests #2393
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Closed
Closed
Changes from all commits
Commits
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,370 @@ | ||
module DynamicPPLCompilerTests | ||
|
||
using ..NumericalTests: check_numerical | ||
using LinearAlgebra: I | ||
using Test: @test, @testset, @test_throws | ||
using Turing | ||
|
||
# TODO(penelopeysm): Move this to a DynamicPPL Test Utils module | ||
# We use this a lot! | ||
@model function gdemo_d() | ||
s ~ InverseGamma(2, 3) | ||
m ~ Normal(0, sqrt(s)) | ||
1.5 ~ Normal(m, sqrt(s)) | ||
2.0 ~ Normal(m, sqrt(s)) | ||
return s, m | ||
end | ||
const gdemo_default = gdemo_d() | ||
|
||
@testset "compiler.jl" begin | ||
@testset "assume" begin | ||
@model function test_assume() | ||
x ~ Bernoulli(1) | ||
y ~ Bernoulli(x / 2) | ||
return x, y | ||
end | ||
|
||
smc = SMC() | ||
pg = PG(10) | ||
|
||
res1 = sample(test_assume(), smc, 1000) | ||
res2 = sample(test_assume(), pg, 1000) | ||
|
||
check_numerical(res1, [:y], [0.5]; atol=0.1) | ||
check_numerical(res2, [:y], [0.5]; atol=0.1) | ||
|
||
# Check that all xs are 1. | ||
@test all(isone, res1[:x]) | ||
@test all(isone, res2[:x]) | ||
end | ||
@testset "beta binomial" begin | ||
prior = Beta(2, 2) | ||
obs = [0, 1, 0, 1, 1, 1, 1, 1, 1, 1] | ||
exact = Beta(prior.α + sum(obs), prior.β + length(obs) - sum(obs)) | ||
meanp = exact.α / (exact.α + exact.β) | ||
|
||
@model function testbb(obs) | ||
p ~ Beta(2, 2) | ||
x ~ Bernoulli(p) | ||
for i in 1:length(obs) | ||
obs[i] ~ Bernoulli(p) | ||
end | ||
return p, x | ||
end | ||
|
||
smc = SMC() | ||
pg = PG(10) | ||
gibbs = Gibbs(HMC(0.2, 3, :p), PG(10, :x)) | ||
|
||
chn_s = sample(testbb(obs), smc, 1000) | ||
chn_p = sample(testbb(obs), pg, 2000) | ||
chn_g = sample(testbb(obs), gibbs, 1500) | ||
|
||
check_numerical(chn_s, [:p], [meanp]; atol=0.05) | ||
check_numerical(chn_p, [:x], [meanp]; atol=0.1) | ||
check_numerical(chn_g, [:x], [meanp]; atol=0.1) | ||
end | ||
@testset "forbid global" begin | ||
xs = [1.5 2.0] | ||
# xx = 1 | ||
|
||
@model function fggibbstest(xs) | ||
s ~ InverseGamma(2, 3) | ||
m ~ Normal(0, sqrt(s)) | ||
# xx ~ Normal(m, sqrt(s)) # this is illegal | ||
|
||
for i in 1:length(xs) | ||
xs[i] ~ Normal(m, sqrt(s)) | ||
# for xx in xs | ||
# xx ~ Normal(m, sqrt(s)) | ||
end | ||
return s, m | ||
end | ||
|
||
gibbs = Gibbs(PG(10, :s), HMC(0.4, 8, :m)) | ||
chain = sample(fggibbstest(xs), gibbs, 2) | ||
end | ||
@testset "new grammar" begin | ||
x = Float64[1 2] | ||
|
||
@model function gauss(x) | ||
priors = Array{Float64}(undef, 2) | ||
priors[1] ~ InverseGamma(2, 3) # s | ||
priors[2] ~ Normal(0, sqrt(priors[1])) # m | ||
for i in 1:length(x) | ||
x[i] ~ Normal(priors[2], sqrt(priors[1])) | ||
end | ||
return priors | ||
end | ||
|
||
chain = sample(gauss(x), PG(10), 10) | ||
chain = sample(gauss(x), SMC(), 10) | ||
|
||
@model function gauss2(::Type{TV}=Vector{Float64}; x) where {TV} | ||
priors = TV(undef, 2) | ||
priors[1] ~ InverseGamma(2, 3) # s | ||
priors[2] ~ Normal(0, sqrt(priors[1])) # m | ||
for i in 1:length(x) | ||
x[i] ~ Normal(priors[2], sqrt(priors[1])) | ||
end | ||
return priors | ||
end | ||
|
||
@test_throws ErrorException chain = sample(gauss2(; x=x), PG(10), 10) | ||
@test_throws ErrorException chain = sample(gauss2(; x=x), SMC(), 10) | ||
|
||
@test_throws ErrorException chain = sample( | ||
gauss2(DynamicPPL.TypeWrap{Vector{Float64}}(); x=x), PG(10), 10 | ||
) | ||
@test_throws ErrorException chain = sample( | ||
gauss2(DynamicPPL.TypeWrap{Vector{Float64}}(); x=x), SMC(), 10 | ||
) | ||
end | ||
@testset "new interface" begin | ||
obs = [0, 1, 0, 1, 1, 1, 1, 1, 1, 1] | ||
|
||
@model function newinterface(obs) | ||
p ~ Beta(2, 2) | ||
for i in 1:length(obs) | ||
obs[i] ~ Bernoulli(p) | ||
end | ||
return p | ||
end | ||
|
||
chain = sample( | ||
newinterface(obs), | ||
HMC(0.75, 3, :p, :x; adtype=AutoForwardDiff(; chunksize=2)), | ||
100, | ||
) | ||
end | ||
@testset "no return" begin | ||
@model function noreturn(x) | ||
s ~ InverseGamma(2, 3) | ||
m ~ Normal(0, sqrt(s)) | ||
for i in 1:length(x) | ||
x[i] ~ Normal(m, sqrt(s)) | ||
end | ||
end | ||
|
||
chain = sample(noreturn([1.5 2.0]), HMC(0.15, 6), 1000) | ||
check_numerical(chain, [:s, :m], [49 / 24, 7 / 6]) | ||
end | ||
@testset "observe" begin | ||
@model function test() | ||
z ~ Normal(0, 1) | ||
x ~ Bernoulli(1) | ||
1 ~ Bernoulli(x / 2) | ||
0 ~ Bernoulli(x / 2) | ||
return x | ||
end | ||
|
||
is = IS() | ||
smc = SMC() | ||
pg = PG(10) | ||
|
||
res_is = sample(test(), is, 10000) | ||
res_smc = sample(test(), smc, 1000) | ||
res_pg = sample(test(), pg, 100) | ||
|
||
@test all(isone, res_is[:x]) | ||
@test res_is.logevidence ≈ 2 * log(0.5) | ||
|
||
@test all(isone, res_smc[:x]) | ||
@test res_smc.logevidence ≈ 2 * log(0.5) | ||
|
||
@test all(isone, res_pg[:x]) | ||
end | ||
|
||
@testset "sample" begin | ||
alg = Gibbs(HMC(0.2, 3, :m), PG(10, :s)) | ||
chn = sample(gdemo_default, alg, 1000) | ||
end | ||
|
||
@testset "vectorization @." begin | ||
@model function vdemo1(x) | ||
s ~ InverseGamma(2, 3) | ||
m ~ Normal(0, sqrt(s)) | ||
@. x ~ Normal(m, sqrt(s)) | ||
return s, m | ||
end | ||
|
||
alg = HMC(0.01, 5) | ||
x = randn(100) | ||
res = sample(vdemo1(x), alg, 250) | ||
|
||
@model function vdemo1b(x) | ||
s ~ InverseGamma(2, 3) | ||
m ~ Normal(0, sqrt(s)) | ||
@. x ~ Normal(m, $(sqrt(s))) | ||
return s, m | ||
end | ||
|
||
res = sample(vdemo1b(x), alg, 250) | ||
|
||
@model function vdemo2(x) | ||
μ ~ MvNormal(zeros(size(x, 1)), I) | ||
@. x ~ $(MvNormal(μ, I)) | ||
end | ||
|
||
D = 2 | ||
alg = HMC(0.01, 5) | ||
res = sample(vdemo2(randn(D, 100)), alg, 250) | ||
|
||
# Vector assumptions | ||
N = 10 | ||
alg = HMC(0.2, 4; adtype=AutoForwardDiff(; chunksize=N)) | ||
|
||
@model function vdemo3() | ||
x = Vector{Real}(undef, N) | ||
for i in 1:N | ||
x[i] ~ Normal(0, sqrt(4)) | ||
end | ||
end | ||
|
||
t_loop = @elapsed res = sample(vdemo3(), alg, 1000) | ||
|
||
# Test for vectorize UnivariateDistribution | ||
@model function vdemo4() | ||
x = Vector{Real}(undef, N) | ||
@. x ~ Normal(0, 2) | ||
end | ||
|
||
t_vec = @elapsed res = sample(vdemo4(), alg, 1000) | ||
|
||
@model vdemo5() = x ~ MvNormal(zeros(N), 4 * I) | ||
|
||
t_mv = @elapsed res = sample(vdemo5(), alg, 1000) | ||
|
||
println("Time for") | ||
println(" Loop : ", t_loop) | ||
println(" Vec : ", t_vec) | ||
println(" Mv : ", t_mv) | ||
|
||
# Transformed test | ||
@model function vdemo6() | ||
x = Vector{Real}(undef, N) | ||
@. x ~ InverseGamma(2, 3) | ||
end | ||
|
||
sample(vdemo6(), alg, 1000) | ||
|
||
N = 3 | ||
@model function vdemo7() | ||
x = Array{Real}(undef, N, N) | ||
@. x ~ [InverseGamma(2, 3) for i in 1:N] | ||
end | ||
|
||
sample(vdemo7(), alg, 1000) | ||
end | ||
@testset "vectorization .~" begin | ||
@model function vdemo1(x) | ||
s ~ InverseGamma(2, 3) | ||
m ~ Normal(0, sqrt(s)) | ||
x .~ Normal(m, sqrt(s)) | ||
return s, m | ||
end | ||
|
||
alg = HMC(0.01, 5) | ||
x = randn(100) | ||
res = sample(vdemo1(x), alg, 250) | ||
|
||
@model function vdemo2(x) | ||
μ ~ MvNormal(zeros(size(x, 1)), I) | ||
return x .~ MvNormal(μ, I) | ||
end | ||
|
||
D = 2 | ||
alg = HMC(0.01, 5) | ||
res = sample(vdemo2(randn(D, 100)), alg, 250) | ||
|
||
# Vector assumptions | ||
N = 10 | ||
alg = HMC(0.2, 4; adtype=AutoForwardDiff(; chunksize=N)) | ||
|
||
@model function vdemo3() | ||
x = Vector{Real}(undef, N) | ||
for i in 1:N | ||
x[i] ~ Normal(0, sqrt(4)) | ||
end | ||
end | ||
|
||
t_loop = @elapsed res = sample(vdemo3(), alg, 1000) | ||
|
||
# Test for vectorize UnivariateDistribution | ||
@model function vdemo4() | ||
x = Vector{Real}(undef, N) | ||
return x .~ Normal(0, 2) | ||
end | ||
|
||
t_vec = @elapsed res = sample(vdemo4(), alg, 1000) | ||
|
||
@model vdemo5() = x ~ MvNormal(zeros(N), 4 * I) | ||
|
||
t_mv = @elapsed res = sample(vdemo5(), alg, 1000) | ||
|
||
println("Time for") | ||
println(" Loop : ", t_loop) | ||
println(" Vec : ", t_vec) | ||
println(" Mv : ", t_mv) | ||
|
||
# Transformed test | ||
@model function vdemo6() | ||
x = Vector{Real}(undef, N) | ||
return x .~ InverseGamma(2, 3) | ||
end | ||
|
||
sample(vdemo6(), alg, 1000) | ||
|
||
@model function vdemo7() | ||
x = Array{Real}(undef, N, N) | ||
return x .~ [InverseGamma(2, 3) for i in 1:N] | ||
end | ||
|
||
sample(vdemo7(), alg, 1000) | ||
end | ||
@testset "Type parameters" begin | ||
N = 10 | ||
alg = HMC(0.01, 5; adtype=AutoForwardDiff(; chunksize=N)) | ||
x = randn(1000) | ||
@model function vdemo1(::Type{T}=Float64) where {T} | ||
x = Vector{T}(undef, N) | ||
for i in 1:N | ||
x[i] ~ Normal(0, sqrt(4)) | ||
end | ||
end | ||
|
||
t_loop = @elapsed res = sample(vdemo1(), alg, 250) | ||
t_loop = @elapsed res = sample(vdemo1(DynamicPPL.TypeWrap{Float64}()), alg, 250) | ||
|
||
vdemo1kw(; T) = vdemo1(T) | ||
t_loop = @elapsed res = sample( | ||
vdemo1kw(; T=DynamicPPL.TypeWrap{Float64}()), alg, 250 | ||
) | ||
|
||
@model function vdemo2(::Type{T}=Float64) where {T<:Real} | ||
x = Vector{T}(undef, N) | ||
@. x ~ Normal(0, 2) | ||
end | ||
|
||
t_vec = @elapsed res = sample(vdemo2(), alg, 250) | ||
t_vec = @elapsed res = sample(vdemo2(DynamicPPL.TypeWrap{Float64}()), alg, 250) | ||
|
||
vdemo2kw(; T) = vdemo2(T) | ||
t_vec = @elapsed res = sample( | ||
vdemo2kw(; T=DynamicPPL.TypeWrap{Float64}()), alg, 250 | ||
) | ||
|
||
@model function vdemo3(::Type{TV}=Vector{Float64}) where {TV<:AbstractVector} | ||
x = TV(undef, N) | ||
@. x ~ InverseGamma(2, 3) | ||
end | ||
|
||
sample(vdemo3(), alg, 250) | ||
sample(vdemo3(DynamicPPL.TypeWrap{Vector{Float64}}()), alg, 250) | ||
|
||
vdemo3kw(; T) = vdemo3(T) | ||
sample(vdemo3kw(; T=DynamicPPL.TypeWrap{Vector{Float64}}()), alg, 250) | ||
end | ||
end | ||
|
||
end # module |
Oops, something went wrong.
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Uh oh!
There was an error while loading. Please reload this page.