My items: [Tensorflow version]
https://github.com/hwalsuklee/tensorflow-generative-model-collections
It's adapted to the cifar10. Details can be reached via email.
The following results can be reproduced with command:
python main.py --dataset mnist --gan_type <TYPE> --epoch 40 --batch_size 64
All results are generated from the fixed noise vector.
| Name | Epoch 1 | Epoch 20 | Epoch 40 | GIF |
|---|---|---|---|---|
| GAN | ![]() |
![]() |
![]() |
![]() |
| CGAN | ![]() |
![]() |
![]() |
![]() |
| VAE | ![]() |
![]() |
![]() |
![]() |
| CVAE | ![]() |
![]() |
![]() |
![]() |
| WGAN | ![]() |
![]() |
![]() |
![]() |
| LSGAN | ![]() |
![]() |
![]() |
![]() |
| EBGAN | ![]() |
![]() |
![]() |
![]() |
| ACGAN | ![]() |
![]() |
![]() |
![]() |
| infoGAN | ![]() |
![]() |
![]() |
![]() |
| SAGAN | ![]() |
![]() |
![]() |
![]() |
| Name | Epoch 1 | Epoch 20 | Epoch 40 | GIF |
|---|---|---|---|---|
| CGAN | ![]() |
![]() |
![]() |
![]() |
| CVAE | ![]() |
![]() |
![]() |
![]() |
| ACGAN | ![]() |
![]() |
![]() |
![]() |
| infoGAN | ![]() |
![]() |
![]() |
![]() |
| Name | Loss |
|---|---|
| GAN | ![]() |
| CGAN | ![]() |
| VAE | ![]() |
| CVAE | ![]() |
| WGAN | ![]() |
| LSGAN | ![]() |
| EBGAN | ![]() |
| ACGAN | ![]() |
| infoGAN | ![]() |
| SAGAN | ![]() |
The following shows basic folder structure.
├── main.py # gateway
├── data
│ ├── mnist # mnist data (not included in this repo)
│ ├── t10k-images-idx3-ubyte.gz
│ ├── t10k-labels-idx1-ubyte.gz
│ ├── train-images-idx3-ubyte.gz
│ └── train-labels-idx1-ubyte.gz
│
├── GAN.py # vainilla GAN
├── utils.py # utils
├── models # model files to be saved here
└── results # generation results to be saved here
- Ubuntu 16.04 LTS
- NVIDIA GTX 1080
- cuda 9.0
- Python 3.5.2
- pytorch 0.4.0
- torchvision 0.2.1
This implementation has been based on tensorflow-generative-model-collections and tested with Pytorch on Ubuntu 16.04 using GPU.

































































