@@ -499,8 +499,8 @@ Proof.
499499 apply id_left.
500500Defined .
501501
502- Definition iso_ob {C D : precategory} (hsD : has_homsets D)
503- {F G : functor C D} (a : iso (C:= [C, D, hsD ]) F G)
502+ Definition iso_ob {C : precategory} {D : category}
503+ {F G : functor C D} (a : iso (C:= [C, D]) F G)
504504 : ∏ c, iso (F c) (G c).
505505Proof .
506506 intro c.
@@ -523,9 +523,9 @@ Proof.
523523 + cbn. destruct p as [[a b] f].
524524 apply pathsdirprod; cbn.
525525 * apply (isotoid _ isC).
526- apply iso_inv_from_iso. apply (iso_ob _ eta).
526+ apply iso_inv_from_iso. apply (iso_ob eta).
527527 * apply (isotoid _ isC).
528- apply iso_inv_from_iso. apply (iso_ob _ eta).
528+ apply iso_inv_from_iso. apply (iso_ob eta).
529529 + cbn. destruct p as [[a b] f]. cbn in *.
530530 etrans. apply (transportf_pair (λ x : C × C, C ⟦ pr2 x, pr1 x ⟧)).
531531 cbn.
@@ -544,9 +544,9 @@ Proof.
544544 + cbn. destruct p as [[a b] f].
545545 apply pathsdirprod; cbn.
546546 * apply (isotoid _ isD).
547- apply (iso_ob _ eps).
547+ apply (iso_ob eps).
548548 * apply (isotoid _ isD).
549- apply (iso_ob _ eps).
549+ apply (iso_ob eps).
550550 + cbn. destruct p as [[a b] f]. cbn in *.
551551 etrans. apply (transportf_pair (λ x : D × D, D ⟦ pr2 x, pr1 x ⟧)).
552552 cbn.
@@ -834,18 +834,6 @@ Qed.
834834
835835Coercion univalent_category_is_univalent : univalent_category >-> is_univalent.
836836
837- (* TODO: raise issue in [CategoryTheory.Categories]: delete [category_has_homsets], since now redundant with [homset_property], since [category] coerces to [category]. *)
838-
839- (* TODO: raise issue: should the [HSET] provided be this by default, and current [HSET] be renamed to [HSET_precategory]? *)
840- (* This def exists in UniMath/UniMath
841- Definition HSET_univalent_category : univalent_category.
842- Proof.
843- exists HSET; split.
844- - apply is_univalent_HSET.
845- - apply has_homsets_HSET.
846- Defined.
847- *)
848-
849837Definition functor_univalent_category (C : precategory) (D : univalent_category)
850838 : univalent_category.
851839Proof .
@@ -884,7 +872,7 @@ Lemma yy_comp_nat_trans {C : category}
884872 : yy v ;; p = yy ((p : nat_trans _ _ ) _ v).
885873Proof .
886874 apply nat_trans_eq.
887- - apply has_homsets_HSET .
875+ - apply homset_property .
888876 - intro c. simpl.
889877 apply funextsec. intro f. cbn.
890878 assert (XR := toforallpaths _ _ _ (nat_trans_ax p _ _ f) v ).
@@ -1000,9 +988,8 @@ Proof.
1000988 apply id_right.
1001989Defined .
1002990
1003- Definition nat_iso_from_pointwise_iso (D E : precategory)
1004- (hsE : has_homsets E)
1005- (F G : [D, E, hsE])
991+ Definition nat_iso_from_pointwise_iso (D : precategory) (E : category)
992+ (F G : [D, E])
1006993 (a : ∏ d, iso ((F : functor _ _) d) ((G : functor _ _) d))
1007994 (H : is_nat_trans _ _ a)
1008995 : iso F G.
@@ -1014,12 +1001,12 @@ Proof.
10141001 - intro d. apply (pr2 (a d)).
10151002Defined .
10161003
1017- Lemma iso_from_iso_with_postcomp (D E E' : precategory) hsE hsE'
1004+ Lemma iso_from_iso_with_postcomp (D E E' : category)
10181005 (F G : functor D E) (H : functor E E')
10191006 (Hff : fully_faithful H) :
1020- iso (C:=[D, E', hsE' ]) (functor_composite F H) (functor_composite G H)
1007+ iso (C:=[D, E']) (functor_composite F H) (functor_composite G H)
10211008 ->
1022- iso (C:=[D, E, hsE ]) F G.
1009+ iso (C:=[D, E]) F G.
10231010Proof .
10241011 intro a.
10251012 use nat_iso_from_pointwise_iso.
@@ -1044,9 +1031,9 @@ Proof.
10441031Defined .
10451032
10461033
1047- Definition functor_assoc_iso (D1 D2 D3 D4 : precategory) hsD4
1034+ Definition functor_assoc_iso (D1 D2 D3 : precategory) (D4 : category)
10481035 (F : functor D1 D2) (G : functor D2 D3) (H : functor D3 D4) :
1049- iso (C:=[D1,D4,hsD4 ])
1036+ iso (C:=[D1,D4])
10501037 (functor_composite (functor_composite F G) H)
10511038 (functor_composite F (functor_composite G H)).
10521039Proof .
@@ -1060,9 +1047,9 @@ Proof.
10601047 ).
10611048Defined .
10621049
1063- Definition functor_comp_id_iso (D1 D2 : precategory) hsD2
1050+ Definition functor_comp_id_iso (D1 : precategory) (D2 : category)
10641051 (F : functor D1 D2) :
1065- iso (C:=[D1,D2,hsD2 ]) (functor_composite F (functor_identity _ )) F.
1052+ iso (C:=[D1,D2]) (functor_composite F (functor_identity _ )) F.
10661053Proof .
10671054 use nat_iso_from_pointwise_iso.
10681055 - intro. apply identity_iso.
@@ -1074,10 +1061,10 @@ Proof.
10741061 ).
10751062Defined .
10761063
1077- Definition functor_precomp_iso (D1 D2 D3 : precategory) hsD3
1064+ Definition functor_precomp_iso (D1 D2 : precategory) (D3 : category)
10781065 (F : functor D1 D2) (G H : functor D2 D3) :
1079- iso (C:=[D2,D3,hsD3 ]) G H ->
1080- iso (C:=[D1,D3,hsD3 ]) (functor_composite F G)
1066+ iso (C:=[D2,D3]) G H ->
1067+ iso (C:=[D1,D3]) (functor_composite F G)
10811068 (functor_composite F H).
10821069Proof .
10831070 intro a.
@@ -1231,8 +1218,7 @@ End Square_Transfers.
12311218Section on_pullbacks.
12321219
12331220(* TODO: make all these implicit *)
1234- Variable C : precategory.
1235- Variable hs : has_homsets C.
1221+ Variable C : category.
12361222 Variables a b c d : C.
12371223 Variables (f : a --> b) (g : a --> c) (k : b --> d) (h : c --> d).
12381224
@@ -1316,11 +1302,7 @@ Section on_pullbacks.
13161302 Lemma postcomp_pb_with_iso (y : C) (r : y --> d) (i : iso b y) (Hi : i ;; r = k) :
13171303 ∑ H : f ;; i ;; r = g ;; h, isPullback H.
13181304 Proof .
1319- simple refine (@commutes_and_is_pullback_transfer_iso (C,,hs)
1320- _ _ _ _ _ _ _ _
1321- _ _ _ _ _ _ _ _
1322- _ _ _ _ _ _ _ _
1323- _ Pb);
1305+ simple refine (commutes_and_is_pullback_transfer_iso _ _ _ _ _ Pb);
13241306 try apply identity_iso;
13251307 try rewrite id_left;
13261308 try rewrite id_right;
@@ -1339,13 +1321,13 @@ Section on_pullbacks.
13391321 Lemma is_symmetric'_isPullback
13401322 : isPullback (!sqr_comm) -> isPullback sqr_comm.
13411323 Proof .
1342- refine ( is_symmetric_isPullback hs _) .
1324+ use is_symmetric_isPullback; apply homset_property .
13431325 Defined .
13441326
13451327End on_pullbacks.
13461328
1347- Arguments map_into_Pb {_ _ _ _ _ _ _ _ _ } _ _ {_} _ _ _ .
1348- Arguments map_into_Pb_unique {_ _ _ _ _ _ _ _ _} _ _ {_} _ _ _ _ .
1329+ Arguments map_into_Pb {_ _ _ _ _ _ _ _ _ } _ Pb {_} _ _ _.
1330+ Arguments map_into_Pb_unique {_ _ _ _ _ _ _ _ _} _ Pb {_} _ _ _ _.
13491331
13501332Section Pullbacks_hSet.
13511333
@@ -1501,7 +1483,7 @@ Proof.
15011483 + apply (pr2 (pr1 XR) Three).
15021484 - intro t.
15031485 apply subtypePath.
1504- + intro. apply isapropdirprod; apply has_homsets_HSET .
1486+ + intro. apply isapropdirprod; apply homset_property .
15051487 + simpl.
15061488 apply path_to_ctr.
15071489 destruct t as [t [H1 H2]].
0 commit comments